This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subset relation and subclass relationship ( df-ss ) are the same, that is, ( AS B <-> A C B ) when B is a set. (Contributed by Peter Mazsa, 31-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brssr | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 S 𝐵 ↔ 𝐴 ⊆ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relssr | ⊢ Rel S | |
| 2 | 1 | brrelex1i | ⊢ ( 𝐴 S 𝐵 → 𝐴 ∈ V ) |
| 3 | 2 | adantl | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 S 𝐵 ) → 𝐴 ∈ V ) |
| 4 | simpl | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 S 𝐵 ) → 𝐵 ∈ 𝑉 ) | |
| 5 | 3 4 | jca | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 S 𝐵 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝑉 ) ) |
| 6 | ssexg | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ) → 𝐴 ∈ V ) | |
| 7 | simpr | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ) → 𝐵 ∈ 𝑉 ) | |
| 8 | 6 7 | jca | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝑉 ) ) |
| 9 | 8 | ancoms | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝑉 ) ) |
| 10 | sseq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ⊆ 𝑦 ↔ 𝐴 ⊆ 𝑦 ) ) | |
| 11 | sseq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝐴 ⊆ 𝑦 ↔ 𝐴 ⊆ 𝐵 ) ) | |
| 12 | df-ssr | ⊢ S = { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ⊆ 𝑦 } | |
| 13 | 10 11 12 | brabg | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 S 𝐵 ↔ 𝐴 ⊆ 𝐵 ) ) |
| 14 | 5 9 13 | pm5.21nd | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 S 𝐵 ↔ 𝐴 ⊆ 𝐵 ) ) |