This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of epsilon relation, see also extid , extssr and the comment of df-ssr . (Contributed by Peter Mazsa, 10-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | extep | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( [ 𝐴 ] ◡ E = [ 𝐵 ] ◡ E ↔ 𝐴 = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eccnvep | ⊢ ( 𝐴 ∈ 𝑉 → [ 𝐴 ] ◡ E = 𝐴 ) | |
| 2 | eccnvep | ⊢ ( 𝐵 ∈ 𝑊 → [ 𝐵 ] ◡ E = 𝐵 ) | |
| 3 | 1 2 | eqeqan12d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( [ 𝐴 ] ◡ E = [ 𝐵 ] ◡ E ↔ 𝐴 = 𝐵 ) ) |