This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of identity relation, see also extep , extssr and the comment of df-ssr . (Contributed by Peter Mazsa, 5-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | extid | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 ] ◡ I = [ 𝐵 ] ◡ I ↔ 𝐴 = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvi | ⊢ ◡ I = I | |
| 2 | 1 | eceq2i | ⊢ [ 𝐴 ] ◡ I = [ 𝐴 ] I |
| 3 | ecidsn | ⊢ [ 𝐴 ] I = { 𝐴 } | |
| 4 | 2 3 | eqtri | ⊢ [ 𝐴 ] ◡ I = { 𝐴 } |
| 5 | 1 | eceq2i | ⊢ [ 𝐵 ] ◡ I = [ 𝐵 ] I |
| 6 | ecidsn | ⊢ [ 𝐵 ] I = { 𝐵 } | |
| 7 | 5 6 | eqtri | ⊢ [ 𝐵 ] ◡ I = { 𝐵 } |
| 8 | 4 7 | eqeq12i | ⊢ ( [ 𝐴 ] ◡ I = [ 𝐵 ] ◡ I ↔ { 𝐴 } = { 𝐵 } ) |
| 9 | sneqbg | ⊢ ( 𝐴 ∈ 𝑉 → ( { 𝐴 } = { 𝐵 } ↔ 𝐴 = 𝐵 ) ) | |
| 10 | 8 9 | bitrid | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 ] ◡ I = [ 𝐵 ] ◡ I ↔ 𝐴 = 𝐵 ) ) |