This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted existence in a class (even if proper) implies restricted existence in a subset. (Contributed by NM, 23-Aug-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | exss | |- ( E. x e. A ph -> E. y ( y C_ A /\ E. x e. y ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab | |- { x e. A | ph } = { x | ( x e. A /\ ph ) } |
|
| 2 | 1 | neeq1i | |- ( { x e. A | ph } =/= (/) <-> { x | ( x e. A /\ ph ) } =/= (/) ) |
| 3 | rabn0 | |- ( { x e. A | ph } =/= (/) <-> E. x e. A ph ) |
|
| 4 | n0 | |- ( { x | ( x e. A /\ ph ) } =/= (/) <-> E. z z e. { x | ( x e. A /\ ph ) } ) |
|
| 5 | 2 3 4 | 3bitr3i | |- ( E. x e. A ph <-> E. z z e. { x | ( x e. A /\ ph ) } ) |
| 6 | vex | |- z e. _V |
|
| 7 | 6 | snss | |- ( z e. { x | ( x e. A /\ ph ) } <-> { z } C_ { x | ( x e. A /\ ph ) } ) |
| 8 | ssab2 | |- { x | ( x e. A /\ ph ) } C_ A |
|
| 9 | sstr2 | |- ( { z } C_ { x | ( x e. A /\ ph ) } -> ( { x | ( x e. A /\ ph ) } C_ A -> { z } C_ A ) ) |
|
| 10 | 8 9 | mpi | |- ( { z } C_ { x | ( x e. A /\ ph ) } -> { z } C_ A ) |
| 11 | 7 10 | sylbi | |- ( z e. { x | ( x e. A /\ ph ) } -> { z } C_ A ) |
| 12 | simpr | |- ( ( [ z / x ] x e. A /\ [ z / x ] ph ) -> [ z / x ] ph ) |
|
| 13 | equsb1v | |- [ z / x ] x = z |
|
| 14 | velsn | |- ( x e. { z } <-> x = z ) |
|
| 15 | 14 | sbbii | |- ( [ z / x ] x e. { z } <-> [ z / x ] x = z ) |
| 16 | 13 15 | mpbir | |- [ z / x ] x e. { z } |
| 17 | 12 16 | jctil | |- ( ( [ z / x ] x e. A /\ [ z / x ] ph ) -> ( [ z / x ] x e. { z } /\ [ z / x ] ph ) ) |
| 18 | df-clab | |- ( z e. { x | ( x e. A /\ ph ) } <-> [ z / x ] ( x e. A /\ ph ) ) |
|
| 19 | sban | |- ( [ z / x ] ( x e. A /\ ph ) <-> ( [ z / x ] x e. A /\ [ z / x ] ph ) ) |
|
| 20 | 18 19 | bitri | |- ( z e. { x | ( x e. A /\ ph ) } <-> ( [ z / x ] x e. A /\ [ z / x ] ph ) ) |
| 21 | df-rab | |- { x e. { z } | ph } = { x | ( x e. { z } /\ ph ) } |
|
| 22 | 21 | eleq2i | |- ( z e. { x e. { z } | ph } <-> z e. { x | ( x e. { z } /\ ph ) } ) |
| 23 | df-clab | |- ( z e. { x | ( x e. { z } /\ ph ) } <-> [ z / x ] ( x e. { z } /\ ph ) ) |
|
| 24 | sban | |- ( [ z / x ] ( x e. { z } /\ ph ) <-> ( [ z / x ] x e. { z } /\ [ z / x ] ph ) ) |
|
| 25 | 22 23 24 | 3bitri | |- ( z e. { x e. { z } | ph } <-> ( [ z / x ] x e. { z } /\ [ z / x ] ph ) ) |
| 26 | 17 20 25 | 3imtr4i | |- ( z e. { x | ( x e. A /\ ph ) } -> z e. { x e. { z } | ph } ) |
| 27 | 26 | ne0d | |- ( z e. { x | ( x e. A /\ ph ) } -> { x e. { z } | ph } =/= (/) ) |
| 28 | rabn0 | |- ( { x e. { z } | ph } =/= (/) <-> E. x e. { z } ph ) |
|
| 29 | 27 28 | sylib | |- ( z e. { x | ( x e. A /\ ph ) } -> E. x e. { z } ph ) |
| 30 | vsnex | |- { z } e. _V |
|
| 31 | sseq1 | |- ( y = { z } -> ( y C_ A <-> { z } C_ A ) ) |
|
| 32 | rexeq | |- ( y = { z } -> ( E. x e. y ph <-> E. x e. { z } ph ) ) |
|
| 33 | 31 32 | anbi12d | |- ( y = { z } -> ( ( y C_ A /\ E. x e. y ph ) <-> ( { z } C_ A /\ E. x e. { z } ph ) ) ) |
| 34 | 30 33 | spcev | |- ( ( { z } C_ A /\ E. x e. { z } ph ) -> E. y ( y C_ A /\ E. x e. y ph ) ) |
| 35 | 11 29 34 | syl2anc | |- ( z e. { x | ( x e. A /\ ph ) } -> E. y ( y C_ A /\ E. x e. y ph ) ) |
| 36 | 35 | exlimiv | |- ( E. z z e. { x | ( x e. A /\ ph ) } -> E. y ( y C_ A /\ E. x e. y ph ) ) |
| 37 | 5 36 | sylbi | |- ( E. x e. A ph -> E. y ( y C_ A /\ E. x e. y ph ) ) |