This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer power with an integer base greater than 1 is greater than 1 iff the exponent is positive. (Contributed by AV, 28-Dec-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | expnngt1b | ⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ℤ ) → ( 1 < ( 𝐴 ↑ 𝐵 ) ↔ 𝐵 ∈ ℕ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz2nn | ⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 𝐴 ∈ ℕ ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ℤ ) → 𝐴 ∈ ℕ ) |
| 3 | 2 | adantr | ⊢ ( ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ℤ ) ∧ 1 < ( 𝐴 ↑ 𝐵 ) ) → 𝐴 ∈ ℕ ) |
| 4 | simplr | ⊢ ( ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ℤ ) ∧ 1 < ( 𝐴 ↑ 𝐵 ) ) → 𝐵 ∈ ℤ ) | |
| 5 | simpr | ⊢ ( ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ℤ ) ∧ 1 < ( 𝐴 ↑ 𝐵 ) ) → 1 < ( 𝐴 ↑ 𝐵 ) ) | |
| 6 | expnngt1 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 1 < ( 𝐴 ↑ 𝐵 ) ) → 𝐵 ∈ ℕ ) | |
| 7 | 3 4 5 6 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ℤ ) ∧ 1 < ( 𝐴 ↑ 𝐵 ) ) → 𝐵 ∈ ℕ ) |
| 8 | 2 | nnred | ⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ℤ ) → 𝐴 ∈ ℝ ) |
| 9 | 8 | adantr | ⊢ ( ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ℤ ) ∧ 𝐵 ∈ ℕ ) → 𝐴 ∈ ℝ ) |
| 10 | simpr | ⊢ ( ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ℤ ) ∧ 𝐵 ∈ ℕ ) → 𝐵 ∈ ℕ ) | |
| 11 | eluz2gt1 | ⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 1 < 𝐴 ) | |
| 12 | 11 | adantr | ⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ℤ ) → 1 < 𝐴 ) |
| 13 | 12 | adantr | ⊢ ( ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ℤ ) ∧ 𝐵 ∈ ℕ ) → 1 < 𝐴 ) |
| 14 | expgt1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 1 < 𝐴 ) → 1 < ( 𝐴 ↑ 𝐵 ) ) | |
| 15 | 9 10 13 14 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ℤ ) ∧ 𝐵 ∈ ℕ ) → 1 < ( 𝐴 ↑ 𝐵 ) ) |
| 16 | 7 15 | impbida | ⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ℤ ) → ( 1 < ( 𝐴 ↑ 𝐵 ) ↔ 𝐵 ∈ ℕ ) ) |