This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the binary operation of a magma with identity. (Contributed by Jeff Madsen, 16-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | exidcl.1 | ⊢ 𝑋 = ran 𝐺 | |
| Assertion | exidcl | ⊢ ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exidcl.1 | ⊢ 𝑋 = ran 𝐺 | |
| 2 | rngopidOLD | ⊢ ( 𝐺 ∈ ( Magma ∩ ExId ) → ran 𝐺 = dom dom 𝐺 ) | |
| 3 | 1 2 | eqtrid | ⊢ ( 𝐺 ∈ ( Magma ∩ ExId ) → 𝑋 = dom dom 𝐺 ) |
| 4 | 3 | eleq2d | ⊢ ( 𝐺 ∈ ( Magma ∩ ExId ) → ( 𝐴 ∈ 𝑋 ↔ 𝐴 ∈ dom dom 𝐺 ) ) |
| 5 | 3 | eleq2d | ⊢ ( 𝐺 ∈ ( Magma ∩ ExId ) → ( 𝐵 ∈ 𝑋 ↔ 𝐵 ∈ dom dom 𝐺 ) ) |
| 6 | 4 5 | anbi12d | ⊢ ( 𝐺 ∈ ( Magma ∩ ExId ) → ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ↔ ( 𝐴 ∈ dom dom 𝐺 ∧ 𝐵 ∈ dom dom 𝐺 ) ) ) |
| 7 | 6 | pm5.32i | ⊢ ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) ↔ ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ ( 𝐴 ∈ dom dom 𝐺 ∧ 𝐵 ∈ dom dom 𝐺 ) ) ) |
| 8 | inss1 | ⊢ ( Magma ∩ ExId ) ⊆ Magma | |
| 9 | 8 | sseli | ⊢ ( 𝐺 ∈ ( Magma ∩ ExId ) → 𝐺 ∈ Magma ) |
| 10 | eqid | ⊢ dom dom 𝐺 = dom dom 𝐺 | |
| 11 | 10 | clmgmOLD | ⊢ ( ( 𝐺 ∈ Magma ∧ 𝐴 ∈ dom dom 𝐺 ∧ 𝐵 ∈ dom dom 𝐺 ) → ( 𝐴 𝐺 𝐵 ) ∈ dom dom 𝐺 ) |
| 12 | 9 11 | syl3an1 | ⊢ ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝐴 ∈ dom dom 𝐺 ∧ 𝐵 ∈ dom dom 𝐺 ) → ( 𝐴 𝐺 𝐵 ) ∈ dom dom 𝐺 ) |
| 13 | 12 | 3expb | ⊢ ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ ( 𝐴 ∈ dom dom 𝐺 ∧ 𝐵 ∈ dom dom 𝐺 ) ) → ( 𝐴 𝐺 𝐵 ) ∈ dom dom 𝐺 ) |
| 14 | 7 13 | sylbi | ⊢ ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 𝐺 𝐵 ) ∈ dom dom 𝐺 ) |
| 15 | 14 | 3impb | ⊢ ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐺 𝐵 ) ∈ dom dom 𝐺 ) |
| 16 | 3 | 3ad2ant1 | ⊢ ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝑋 = dom dom 𝐺 ) |
| 17 | 15 16 | eleqtrrd | ⊢ ( ( 𝐺 ∈ ( Magma ∩ ExId ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ) |