This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the binary operation of a magma with identity. (Contributed by Jeff Madsen, 16-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | exidcl.1 | |- X = ran G |
|
| Assertion | exidcl | |- ( ( G e. ( Magma i^i ExId ) /\ A e. X /\ B e. X ) -> ( A G B ) e. X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exidcl.1 | |- X = ran G |
|
| 2 | rngopidOLD | |- ( G e. ( Magma i^i ExId ) -> ran G = dom dom G ) |
|
| 3 | 1 2 | eqtrid | |- ( G e. ( Magma i^i ExId ) -> X = dom dom G ) |
| 4 | 3 | eleq2d | |- ( G e. ( Magma i^i ExId ) -> ( A e. X <-> A e. dom dom G ) ) |
| 5 | 3 | eleq2d | |- ( G e. ( Magma i^i ExId ) -> ( B e. X <-> B e. dom dom G ) ) |
| 6 | 4 5 | anbi12d | |- ( G e. ( Magma i^i ExId ) -> ( ( A e. X /\ B e. X ) <-> ( A e. dom dom G /\ B e. dom dom G ) ) ) |
| 7 | 6 | pm5.32i | |- ( ( G e. ( Magma i^i ExId ) /\ ( A e. X /\ B e. X ) ) <-> ( G e. ( Magma i^i ExId ) /\ ( A e. dom dom G /\ B e. dom dom G ) ) ) |
| 8 | inss1 | |- ( Magma i^i ExId ) C_ Magma |
|
| 9 | 8 | sseli | |- ( G e. ( Magma i^i ExId ) -> G e. Magma ) |
| 10 | eqid | |- dom dom G = dom dom G |
|
| 11 | 10 | clmgmOLD | |- ( ( G e. Magma /\ A e. dom dom G /\ B e. dom dom G ) -> ( A G B ) e. dom dom G ) |
| 12 | 9 11 | syl3an1 | |- ( ( G e. ( Magma i^i ExId ) /\ A e. dom dom G /\ B e. dom dom G ) -> ( A G B ) e. dom dom G ) |
| 13 | 12 | 3expb | |- ( ( G e. ( Magma i^i ExId ) /\ ( A e. dom dom G /\ B e. dom dom G ) ) -> ( A G B ) e. dom dom G ) |
| 14 | 7 13 | sylbi | |- ( ( G e. ( Magma i^i ExId ) /\ ( A e. X /\ B e. X ) ) -> ( A G B ) e. dom dom G ) |
| 15 | 14 | 3impb | |- ( ( G e. ( Magma i^i ExId ) /\ A e. X /\ B e. X ) -> ( A G B ) e. dom dom G ) |
| 16 | 3 | 3ad2ant1 | |- ( ( G e. ( Magma i^i ExId ) /\ A e. X /\ B e. X ) -> X = dom dom G ) |
| 17 | 15 16 | eleqtrrd | |- ( ( G e. ( Magma i^i ExId ) /\ A e. X /\ B e. X ) -> ( A G B ) e. X ) |