This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A relation equivalent to the existence of an onto mapping. The right-hand f is not necessarily a function. (Contributed by NM, 20-Mar-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | exfo | ⊢ ( ∃ 𝑓 𝑓 : 𝐴 –onto→ 𝐵 ↔ ∃ 𝑓 ( ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝑥 𝑓 𝑦 ∧ ∀ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐴 𝑦 𝑓 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffo4 | ⊢ ( 𝑓 : 𝐴 –onto→ 𝐵 ↔ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐴 𝑦 𝑓 𝑥 ) ) | |
| 2 | dff4 | ⊢ ( 𝑓 : 𝐴 ⟶ 𝐵 ↔ ( 𝑓 ⊆ ( 𝐴 × 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝑥 𝑓 𝑦 ) ) | |
| 3 | 2 | simprbi | ⊢ ( 𝑓 : 𝐴 ⟶ 𝐵 → ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝑥 𝑓 𝑦 ) |
| 4 | 3 | anim1i | ⊢ ( ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐴 𝑦 𝑓 𝑥 ) → ( ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝑥 𝑓 𝑦 ∧ ∀ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐴 𝑦 𝑓 𝑥 ) ) |
| 5 | 1 4 | sylbi | ⊢ ( 𝑓 : 𝐴 –onto→ 𝐵 → ( ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝑥 𝑓 𝑦 ∧ ∀ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐴 𝑦 𝑓 𝑥 ) ) |
| 6 | 5 | eximi | ⊢ ( ∃ 𝑓 𝑓 : 𝐴 –onto→ 𝐵 → ∃ 𝑓 ( ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝑥 𝑓 𝑦 ∧ ∀ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐴 𝑦 𝑓 𝑥 ) ) |
| 7 | brinxp | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 𝑓 𝑦 ↔ 𝑥 ( 𝑓 ∩ ( 𝐴 × 𝐵 ) ) 𝑦 ) ) | |
| 8 | 7 | reubidva | ⊢ ( 𝑥 ∈ 𝐴 → ( ∃! 𝑦 ∈ 𝐵 𝑥 𝑓 𝑦 ↔ ∃! 𝑦 ∈ 𝐵 𝑥 ( 𝑓 ∩ ( 𝐴 × 𝐵 ) ) 𝑦 ) ) |
| 9 | 8 | biimpd | ⊢ ( 𝑥 ∈ 𝐴 → ( ∃! 𝑦 ∈ 𝐵 𝑥 𝑓 𝑦 → ∃! 𝑦 ∈ 𝐵 𝑥 ( 𝑓 ∩ ( 𝐴 × 𝐵 ) ) 𝑦 ) ) |
| 10 | 9 | ralimia | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝑥 𝑓 𝑦 → ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝑥 ( 𝑓 ∩ ( 𝐴 × 𝐵 ) ) 𝑦 ) |
| 11 | inss2 | ⊢ ( 𝑓 ∩ ( 𝐴 × 𝐵 ) ) ⊆ ( 𝐴 × 𝐵 ) | |
| 12 | 10 11 | jctil | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝑥 𝑓 𝑦 → ( ( 𝑓 ∩ ( 𝐴 × 𝐵 ) ) ⊆ ( 𝐴 × 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝑥 ( 𝑓 ∩ ( 𝐴 × 𝐵 ) ) 𝑦 ) ) |
| 13 | dff4 | ⊢ ( ( 𝑓 ∩ ( 𝐴 × 𝐵 ) ) : 𝐴 ⟶ 𝐵 ↔ ( ( 𝑓 ∩ ( 𝐴 × 𝐵 ) ) ⊆ ( 𝐴 × 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝑥 ( 𝑓 ∩ ( 𝐴 × 𝐵 ) ) 𝑦 ) ) | |
| 14 | 12 13 | sylibr | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝑥 𝑓 𝑦 → ( 𝑓 ∩ ( 𝐴 × 𝐵 ) ) : 𝐴 ⟶ 𝐵 ) |
| 15 | rninxp | ⊢ ( ran ( 𝑓 ∩ ( 𝐴 × 𝐵 ) ) = 𝐵 ↔ ∀ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐴 𝑦 𝑓 𝑥 ) | |
| 16 | 15 | biimpri | ⊢ ( ∀ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐴 𝑦 𝑓 𝑥 → ran ( 𝑓 ∩ ( 𝐴 × 𝐵 ) ) = 𝐵 ) |
| 17 | 14 16 | anim12i | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝑥 𝑓 𝑦 ∧ ∀ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐴 𝑦 𝑓 𝑥 ) → ( ( 𝑓 ∩ ( 𝐴 × 𝐵 ) ) : 𝐴 ⟶ 𝐵 ∧ ran ( 𝑓 ∩ ( 𝐴 × 𝐵 ) ) = 𝐵 ) ) |
| 18 | dffo2 | ⊢ ( ( 𝑓 ∩ ( 𝐴 × 𝐵 ) ) : 𝐴 –onto→ 𝐵 ↔ ( ( 𝑓 ∩ ( 𝐴 × 𝐵 ) ) : 𝐴 ⟶ 𝐵 ∧ ran ( 𝑓 ∩ ( 𝐴 × 𝐵 ) ) = 𝐵 ) ) | |
| 19 | 17 18 | sylibr | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝑥 𝑓 𝑦 ∧ ∀ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐴 𝑦 𝑓 𝑥 ) → ( 𝑓 ∩ ( 𝐴 × 𝐵 ) ) : 𝐴 –onto→ 𝐵 ) |
| 20 | vex | ⊢ 𝑓 ∈ V | |
| 21 | 20 | inex1 | ⊢ ( 𝑓 ∩ ( 𝐴 × 𝐵 ) ) ∈ V |
| 22 | foeq1 | ⊢ ( 𝑔 = ( 𝑓 ∩ ( 𝐴 × 𝐵 ) ) → ( 𝑔 : 𝐴 –onto→ 𝐵 ↔ ( 𝑓 ∩ ( 𝐴 × 𝐵 ) ) : 𝐴 –onto→ 𝐵 ) ) | |
| 23 | 21 22 | spcev | ⊢ ( ( 𝑓 ∩ ( 𝐴 × 𝐵 ) ) : 𝐴 –onto→ 𝐵 → ∃ 𝑔 𝑔 : 𝐴 –onto→ 𝐵 ) |
| 24 | 19 23 | syl | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝑥 𝑓 𝑦 ∧ ∀ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐴 𝑦 𝑓 𝑥 ) → ∃ 𝑔 𝑔 : 𝐴 –onto→ 𝐵 ) |
| 25 | 24 | exlimiv | ⊢ ( ∃ 𝑓 ( ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝑥 𝑓 𝑦 ∧ ∀ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐴 𝑦 𝑓 𝑥 ) → ∃ 𝑔 𝑔 : 𝐴 –onto→ 𝐵 ) |
| 26 | foeq1 | ⊢ ( 𝑔 = 𝑓 → ( 𝑔 : 𝐴 –onto→ 𝐵 ↔ 𝑓 : 𝐴 –onto→ 𝐵 ) ) | |
| 27 | 26 | cbvexvw | ⊢ ( ∃ 𝑔 𝑔 : 𝐴 –onto→ 𝐵 ↔ ∃ 𝑓 𝑓 : 𝐴 –onto→ 𝐵 ) |
| 28 | 25 27 | sylib | ⊢ ( ∃ 𝑓 ( ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝑥 𝑓 𝑦 ∧ ∀ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐴 𝑦 𝑓 𝑥 ) → ∃ 𝑓 𝑓 : 𝐴 –onto→ 𝐵 ) |
| 29 | 6 28 | impbii | ⊢ ( ∃ 𝑓 𝑓 : 𝐴 –onto→ 𝐵 ↔ ∃ 𝑓 ( ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝑥 𝑓 𝑦 ∧ ∀ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐴 𝑦 𝑓 𝑥 ) ) |