This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of a mapping. (Contributed by NM, 20-Mar-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dff4 | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 ↔ ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝑥 𝐹 𝑦 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dff3 | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 ↔ ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 𝑥 𝐹 𝑦 ) ) | |
| 2 | df-br | ⊢ ( 𝑥 𝐹 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ) | |
| 3 | ssel | ⊢ ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) → ( 〈 𝑥 , 𝑦 〉 ∈ 𝐹 → 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐵 ) ) ) | |
| 4 | opelxp2 | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐵 ) → 𝑦 ∈ 𝐵 ) | |
| 5 | 3 4 | syl6 | ⊢ ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) → ( 〈 𝑥 , 𝑦 〉 ∈ 𝐹 → 𝑦 ∈ 𝐵 ) ) |
| 6 | 2 5 | biimtrid | ⊢ ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) → ( 𝑥 𝐹 𝑦 → 𝑦 ∈ 𝐵 ) ) |
| 7 | 6 | pm4.71rd | ⊢ ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) → ( 𝑥 𝐹 𝑦 ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑥 𝐹 𝑦 ) ) ) |
| 8 | 7 | eubidv | ⊢ ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) → ( ∃! 𝑦 𝑥 𝐹 𝑦 ↔ ∃! 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝑥 𝐹 𝑦 ) ) ) |
| 9 | df-reu | ⊢ ( ∃! 𝑦 ∈ 𝐵 𝑥 𝐹 𝑦 ↔ ∃! 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝑥 𝐹 𝑦 ) ) | |
| 10 | 8 9 | bitr4di | ⊢ ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) → ( ∃! 𝑦 𝑥 𝐹 𝑦 ↔ ∃! 𝑦 ∈ 𝐵 𝑥 𝐹 𝑦 ) ) |
| 11 | 10 | ralbidv | ⊢ ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) → ( ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 𝑥 𝐹 𝑦 ↔ ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝑥 𝐹 𝑦 ) ) |
| 12 | 11 | pm5.32i | ⊢ ( ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 𝑥 𝐹 𝑦 ) ↔ ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝑥 𝐹 𝑦 ) ) |
| 13 | 1 12 | bitri | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 ↔ ( 𝐹 ⊆ ( 𝐴 × 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝑥 𝐹 𝑦 ) ) |