This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of an onto mapping. (Contributed by NM, 20-Mar-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dffo4 | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑥 𝐹 𝑦 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffo2 | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ran 𝐹 = 𝐵 ) ) | |
| 2 | simpl | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ran 𝐹 = 𝐵 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 3 | vex | ⊢ 𝑦 ∈ V | |
| 4 | 3 | elrn | ⊢ ( 𝑦 ∈ ran 𝐹 ↔ ∃ 𝑥 𝑥 𝐹 𝑦 ) |
| 5 | eleq2 | ⊢ ( ran 𝐹 = 𝐵 → ( 𝑦 ∈ ran 𝐹 ↔ 𝑦 ∈ 𝐵 ) ) | |
| 6 | 4 5 | bitr3id | ⊢ ( ran 𝐹 = 𝐵 → ( ∃ 𝑥 𝑥 𝐹 𝑦 ↔ 𝑦 ∈ 𝐵 ) ) |
| 7 | 6 | biimpar | ⊢ ( ( ran 𝐹 = 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ∃ 𝑥 𝑥 𝐹 𝑦 ) |
| 8 | 7 | adantll | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ran 𝐹 = 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ∃ 𝑥 𝑥 𝐹 𝑦 ) |
| 9 | ffn | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 Fn 𝐴 ) | |
| 10 | fnbr | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑥 𝐹 𝑦 ) → 𝑥 ∈ 𝐴 ) | |
| 11 | 10 | ex | ⊢ ( 𝐹 Fn 𝐴 → ( 𝑥 𝐹 𝑦 → 𝑥 ∈ 𝐴 ) ) |
| 12 | 9 11 | syl | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 𝑥 𝐹 𝑦 → 𝑥 ∈ 𝐴 ) ) |
| 13 | 12 | ancrd | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( 𝑥 𝐹 𝑦 → ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ) ) |
| 14 | 13 | eximdv | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ∃ 𝑥 𝑥 𝐹 𝑦 → ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ) ) |
| 15 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝑥 𝐹 𝑦 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝐹 𝑦 ) ) | |
| 16 | 14 15 | imbitrrdi | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ∃ 𝑥 𝑥 𝐹 𝑦 → ∃ 𝑥 ∈ 𝐴 𝑥 𝐹 𝑦 ) ) |
| 17 | 16 | ad2antrr | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ran 𝐹 = 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( ∃ 𝑥 𝑥 𝐹 𝑦 → ∃ 𝑥 ∈ 𝐴 𝑥 𝐹 𝑦 ) ) |
| 18 | 8 17 | mpd | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ran 𝐹 = 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ∃ 𝑥 ∈ 𝐴 𝑥 𝐹 𝑦 ) |
| 19 | 18 | ralrimiva | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ran 𝐹 = 𝐵 ) → ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑥 𝐹 𝑦 ) |
| 20 | 2 19 | jca | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ran 𝐹 = 𝐵 ) → ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑥 𝐹 𝑦 ) ) |
| 21 | 1 20 | sylbi | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑥 𝐹 𝑦 ) ) |
| 22 | fnbrfvb | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) = 𝑦 ↔ 𝑥 𝐹 𝑦 ) ) | |
| 23 | 22 | biimprd | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 𝐹 𝑦 → ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ) |
| 24 | eqcom | ⊢ ( ( 𝐹 ‘ 𝑥 ) = 𝑦 ↔ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) | |
| 25 | 23 24 | imbitrdi | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 𝐹 𝑦 → 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) |
| 26 | 9 25 | sylan | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 𝐹 𝑦 → 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) |
| 27 | 26 | reximdva | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ∃ 𝑥 ∈ 𝐴 𝑥 𝐹 𝑦 → ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) |
| 28 | 27 | ralimdv | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → ( ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑥 𝐹 𝑦 → ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) |
| 29 | 28 | imdistani | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑥 𝐹 𝑦 ) → ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) |
| 30 | dffo3 | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ‘ 𝑥 ) ) ) | |
| 31 | 29 30 | sylibr | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑥 𝐹 𝑦 ) → 𝐹 : 𝐴 –onto→ 𝐵 ) |
| 32 | 21 31 | impbii | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝑥 𝐹 𝑦 ) ) |