This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of s-walks of edges (in a hypergraph). (Contributed by AV, 4-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ewlksfval.i | |- I = ( iEdg ` G ) |
|
| Assertion | ewlksfval | |- ( ( G e. W /\ S e. NN0* ) -> ( G EdgWalks S ) = { f | ( f e. Word dom I /\ A. k e. ( 1 ..^ ( # ` f ) ) S <_ ( # ` ( ( I ` ( f ` ( k - 1 ) ) ) i^i ( I ` ( f ` k ) ) ) ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ewlksfval.i | |- I = ( iEdg ` G ) |
|
| 2 | df-ewlks | |- EdgWalks = ( g e. _V , s e. NN0* |-> { f | [. ( iEdg ` g ) / i ]. ( f e. Word dom i /\ A. k e. ( 1 ..^ ( # ` f ) ) s <_ ( # ` ( ( i ` ( f ` ( k - 1 ) ) ) i^i ( i ` ( f ` k ) ) ) ) ) } ) |
|
| 3 | 2 | a1i | |- ( ( G e. W /\ S e. NN0* ) -> EdgWalks = ( g e. _V , s e. NN0* |-> { f | [. ( iEdg ` g ) / i ]. ( f e. Word dom i /\ A. k e. ( 1 ..^ ( # ` f ) ) s <_ ( # ` ( ( i ` ( f ` ( k - 1 ) ) ) i^i ( i ` ( f ` k ) ) ) ) ) } ) ) |
| 4 | fvexd | |- ( ( g = G /\ s = S ) -> ( iEdg ` g ) e. _V ) |
|
| 5 | simpr | |- ( ( ( g = G /\ s = S ) /\ i = ( iEdg ` g ) ) -> i = ( iEdg ` g ) ) |
|
| 6 | fveq2 | |- ( g = G -> ( iEdg ` g ) = ( iEdg ` G ) ) |
|
| 7 | 6 | adantr | |- ( ( g = G /\ s = S ) -> ( iEdg ` g ) = ( iEdg ` G ) ) |
| 8 | 7 | adantr | |- ( ( ( g = G /\ s = S ) /\ i = ( iEdg ` g ) ) -> ( iEdg ` g ) = ( iEdg ` G ) ) |
| 9 | 5 8 | eqtrd | |- ( ( ( g = G /\ s = S ) /\ i = ( iEdg ` g ) ) -> i = ( iEdg ` G ) ) |
| 10 | 9 | dmeqd | |- ( ( ( g = G /\ s = S ) /\ i = ( iEdg ` g ) ) -> dom i = dom ( iEdg ` G ) ) |
| 11 | wrdeq | |- ( dom i = dom ( iEdg ` G ) -> Word dom i = Word dom ( iEdg ` G ) ) |
|
| 12 | 10 11 | syl | |- ( ( ( g = G /\ s = S ) /\ i = ( iEdg ` g ) ) -> Word dom i = Word dom ( iEdg ` G ) ) |
| 13 | 12 | eleq2d | |- ( ( ( g = G /\ s = S ) /\ i = ( iEdg ` g ) ) -> ( f e. Word dom i <-> f e. Word dom ( iEdg ` G ) ) ) |
| 14 | simpr | |- ( ( g = G /\ s = S ) -> s = S ) |
|
| 15 | 14 | adantr | |- ( ( ( g = G /\ s = S ) /\ i = ( iEdg ` g ) ) -> s = S ) |
| 16 | 9 | fveq1d | |- ( ( ( g = G /\ s = S ) /\ i = ( iEdg ` g ) ) -> ( i ` ( f ` ( k - 1 ) ) ) = ( ( iEdg ` G ) ` ( f ` ( k - 1 ) ) ) ) |
| 17 | 9 | fveq1d | |- ( ( ( g = G /\ s = S ) /\ i = ( iEdg ` g ) ) -> ( i ` ( f ` k ) ) = ( ( iEdg ` G ) ` ( f ` k ) ) ) |
| 18 | 16 17 | ineq12d | |- ( ( ( g = G /\ s = S ) /\ i = ( iEdg ` g ) ) -> ( ( i ` ( f ` ( k - 1 ) ) ) i^i ( i ` ( f ` k ) ) ) = ( ( ( iEdg ` G ) ` ( f ` ( k - 1 ) ) ) i^i ( ( iEdg ` G ) ` ( f ` k ) ) ) ) |
| 19 | 18 | fveq2d | |- ( ( ( g = G /\ s = S ) /\ i = ( iEdg ` g ) ) -> ( # ` ( ( i ` ( f ` ( k - 1 ) ) ) i^i ( i ` ( f ` k ) ) ) ) = ( # ` ( ( ( iEdg ` G ) ` ( f ` ( k - 1 ) ) ) i^i ( ( iEdg ` G ) ` ( f ` k ) ) ) ) ) |
| 20 | 15 19 | breq12d | |- ( ( ( g = G /\ s = S ) /\ i = ( iEdg ` g ) ) -> ( s <_ ( # ` ( ( i ` ( f ` ( k - 1 ) ) ) i^i ( i ` ( f ` k ) ) ) ) <-> S <_ ( # ` ( ( ( iEdg ` G ) ` ( f ` ( k - 1 ) ) ) i^i ( ( iEdg ` G ) ` ( f ` k ) ) ) ) ) ) |
| 21 | 20 | ralbidv | |- ( ( ( g = G /\ s = S ) /\ i = ( iEdg ` g ) ) -> ( A. k e. ( 1 ..^ ( # ` f ) ) s <_ ( # ` ( ( i ` ( f ` ( k - 1 ) ) ) i^i ( i ` ( f ` k ) ) ) ) <-> A. k e. ( 1 ..^ ( # ` f ) ) S <_ ( # ` ( ( ( iEdg ` G ) ` ( f ` ( k - 1 ) ) ) i^i ( ( iEdg ` G ) ` ( f ` k ) ) ) ) ) ) |
| 22 | 13 21 | anbi12d | |- ( ( ( g = G /\ s = S ) /\ i = ( iEdg ` g ) ) -> ( ( f e. Word dom i /\ A. k e. ( 1 ..^ ( # ` f ) ) s <_ ( # ` ( ( i ` ( f ` ( k - 1 ) ) ) i^i ( i ` ( f ` k ) ) ) ) ) <-> ( f e. Word dom ( iEdg ` G ) /\ A. k e. ( 1 ..^ ( # ` f ) ) S <_ ( # ` ( ( ( iEdg ` G ) ` ( f ` ( k - 1 ) ) ) i^i ( ( iEdg ` G ) ` ( f ` k ) ) ) ) ) ) ) |
| 23 | 4 22 | sbcied | |- ( ( g = G /\ s = S ) -> ( [. ( iEdg ` g ) / i ]. ( f e. Word dom i /\ A. k e. ( 1 ..^ ( # ` f ) ) s <_ ( # ` ( ( i ` ( f ` ( k - 1 ) ) ) i^i ( i ` ( f ` k ) ) ) ) ) <-> ( f e. Word dom ( iEdg ` G ) /\ A. k e. ( 1 ..^ ( # ` f ) ) S <_ ( # ` ( ( ( iEdg ` G ) ` ( f ` ( k - 1 ) ) ) i^i ( ( iEdg ` G ) ` ( f ` k ) ) ) ) ) ) ) |
| 24 | 23 | abbidv | |- ( ( g = G /\ s = S ) -> { f | [. ( iEdg ` g ) / i ]. ( f e. Word dom i /\ A. k e. ( 1 ..^ ( # ` f ) ) s <_ ( # ` ( ( i ` ( f ` ( k - 1 ) ) ) i^i ( i ` ( f ` k ) ) ) ) ) } = { f | ( f e. Word dom ( iEdg ` G ) /\ A. k e. ( 1 ..^ ( # ` f ) ) S <_ ( # ` ( ( ( iEdg ` G ) ` ( f ` ( k - 1 ) ) ) i^i ( ( iEdg ` G ) ` ( f ` k ) ) ) ) ) } ) |
| 25 | 24 | adantl | |- ( ( ( G e. W /\ S e. NN0* ) /\ ( g = G /\ s = S ) ) -> { f | [. ( iEdg ` g ) / i ]. ( f e. Word dom i /\ A. k e. ( 1 ..^ ( # ` f ) ) s <_ ( # ` ( ( i ` ( f ` ( k - 1 ) ) ) i^i ( i ` ( f ` k ) ) ) ) ) } = { f | ( f e. Word dom ( iEdg ` G ) /\ A. k e. ( 1 ..^ ( # ` f ) ) S <_ ( # ` ( ( ( iEdg ` G ) ` ( f ` ( k - 1 ) ) ) i^i ( ( iEdg ` G ) ` ( f ` k ) ) ) ) ) } ) |
| 26 | elex | |- ( G e. W -> G e. _V ) |
|
| 27 | 26 | adantr | |- ( ( G e. W /\ S e. NN0* ) -> G e. _V ) |
| 28 | simpr | |- ( ( G e. W /\ S e. NN0* ) -> S e. NN0* ) |
|
| 29 | df-rab | |- { f e. Word dom ( iEdg ` G ) | A. k e. ( 1 ..^ ( # ` f ) ) S <_ ( # ` ( ( ( iEdg ` G ) ` ( f ` ( k - 1 ) ) ) i^i ( ( iEdg ` G ) ` ( f ` k ) ) ) ) } = { f | ( f e. Word dom ( iEdg ` G ) /\ A. k e. ( 1 ..^ ( # ` f ) ) S <_ ( # ` ( ( ( iEdg ` G ) ` ( f ` ( k - 1 ) ) ) i^i ( ( iEdg ` G ) ` ( f ` k ) ) ) ) ) } |
|
| 30 | fvex | |- ( iEdg ` G ) e. _V |
|
| 31 | 30 | dmex | |- dom ( iEdg ` G ) e. _V |
| 32 | 31 | wrdexi | |- Word dom ( iEdg ` G ) e. _V |
| 33 | 32 | rabex | |- { f e. Word dom ( iEdg ` G ) | A. k e. ( 1 ..^ ( # ` f ) ) S <_ ( # ` ( ( ( iEdg ` G ) ` ( f ` ( k - 1 ) ) ) i^i ( ( iEdg ` G ) ` ( f ` k ) ) ) ) } e. _V |
| 34 | 33 | a1i | |- ( ( G e. W /\ S e. NN0* ) -> { f e. Word dom ( iEdg ` G ) | A. k e. ( 1 ..^ ( # ` f ) ) S <_ ( # ` ( ( ( iEdg ` G ) ` ( f ` ( k - 1 ) ) ) i^i ( ( iEdg ` G ) ` ( f ` k ) ) ) ) } e. _V ) |
| 35 | 29 34 | eqeltrrid | |- ( ( G e. W /\ S e. NN0* ) -> { f | ( f e. Word dom ( iEdg ` G ) /\ A. k e. ( 1 ..^ ( # ` f ) ) S <_ ( # ` ( ( ( iEdg ` G ) ` ( f ` ( k - 1 ) ) ) i^i ( ( iEdg ` G ) ` ( f ` k ) ) ) ) ) } e. _V ) |
| 36 | 3 25 27 28 35 | ovmpod | |- ( ( G e. W /\ S e. NN0* ) -> ( G EdgWalks S ) = { f | ( f e. Word dom ( iEdg ` G ) /\ A. k e. ( 1 ..^ ( # ` f ) ) S <_ ( # ` ( ( ( iEdg ` G ) ` ( f ` ( k - 1 ) ) ) i^i ( ( iEdg ` G ) ` ( f ` k ) ) ) ) ) } ) |
| 37 | 1 | eqcomi | |- ( iEdg ` G ) = I |
| 38 | 37 | a1i | |- ( ( G e. W /\ S e. NN0* ) -> ( iEdg ` G ) = I ) |
| 39 | 38 | dmeqd | |- ( ( G e. W /\ S e. NN0* ) -> dom ( iEdg ` G ) = dom I ) |
| 40 | wrdeq | |- ( dom ( iEdg ` G ) = dom I -> Word dom ( iEdg ` G ) = Word dom I ) |
|
| 41 | 39 40 | syl | |- ( ( G e. W /\ S e. NN0* ) -> Word dom ( iEdg ` G ) = Word dom I ) |
| 42 | 41 | eleq2d | |- ( ( G e. W /\ S e. NN0* ) -> ( f e. Word dom ( iEdg ` G ) <-> f e. Word dom I ) ) |
| 43 | 38 | fveq1d | |- ( ( G e. W /\ S e. NN0* ) -> ( ( iEdg ` G ) ` ( f ` ( k - 1 ) ) ) = ( I ` ( f ` ( k - 1 ) ) ) ) |
| 44 | 38 | fveq1d | |- ( ( G e. W /\ S e. NN0* ) -> ( ( iEdg ` G ) ` ( f ` k ) ) = ( I ` ( f ` k ) ) ) |
| 45 | 43 44 | ineq12d | |- ( ( G e. W /\ S e. NN0* ) -> ( ( ( iEdg ` G ) ` ( f ` ( k - 1 ) ) ) i^i ( ( iEdg ` G ) ` ( f ` k ) ) ) = ( ( I ` ( f ` ( k - 1 ) ) ) i^i ( I ` ( f ` k ) ) ) ) |
| 46 | 45 | fveq2d | |- ( ( G e. W /\ S e. NN0* ) -> ( # ` ( ( ( iEdg ` G ) ` ( f ` ( k - 1 ) ) ) i^i ( ( iEdg ` G ) ` ( f ` k ) ) ) ) = ( # ` ( ( I ` ( f ` ( k - 1 ) ) ) i^i ( I ` ( f ` k ) ) ) ) ) |
| 47 | 46 | breq2d | |- ( ( G e. W /\ S e. NN0* ) -> ( S <_ ( # ` ( ( ( iEdg ` G ) ` ( f ` ( k - 1 ) ) ) i^i ( ( iEdg ` G ) ` ( f ` k ) ) ) ) <-> S <_ ( # ` ( ( I ` ( f ` ( k - 1 ) ) ) i^i ( I ` ( f ` k ) ) ) ) ) ) |
| 48 | 47 | ralbidv | |- ( ( G e. W /\ S e. NN0* ) -> ( A. k e. ( 1 ..^ ( # ` f ) ) S <_ ( # ` ( ( ( iEdg ` G ) ` ( f ` ( k - 1 ) ) ) i^i ( ( iEdg ` G ) ` ( f ` k ) ) ) ) <-> A. k e. ( 1 ..^ ( # ` f ) ) S <_ ( # ` ( ( I ` ( f ` ( k - 1 ) ) ) i^i ( I ` ( f ` k ) ) ) ) ) ) |
| 49 | 42 48 | anbi12d | |- ( ( G e. W /\ S e. NN0* ) -> ( ( f e. Word dom ( iEdg ` G ) /\ A. k e. ( 1 ..^ ( # ` f ) ) S <_ ( # ` ( ( ( iEdg ` G ) ` ( f ` ( k - 1 ) ) ) i^i ( ( iEdg ` G ) ` ( f ` k ) ) ) ) ) <-> ( f e. Word dom I /\ A. k e. ( 1 ..^ ( # ` f ) ) S <_ ( # ` ( ( I ` ( f ` ( k - 1 ) ) ) i^i ( I ` ( f ` k ) ) ) ) ) ) ) |
| 50 | 49 | abbidv | |- ( ( G e. W /\ S e. NN0* ) -> { f | ( f e. Word dom ( iEdg ` G ) /\ A. k e. ( 1 ..^ ( # ` f ) ) S <_ ( # ` ( ( ( iEdg ` G ) ` ( f ` ( k - 1 ) ) ) i^i ( ( iEdg ` G ) ` ( f ` k ) ) ) ) ) } = { f | ( f e. Word dom I /\ A. k e. ( 1 ..^ ( # ` f ) ) S <_ ( # ` ( ( I ` ( f ` ( k - 1 ) ) ) i^i ( I ` ( f ` k ) ) ) ) ) } ) |
| 51 | 36 50 | eqtrd | |- ( ( G e. W /\ S e. NN0* ) -> ( G EdgWalks S ) = { f | ( f e. Word dom I /\ A. k e. ( 1 ..^ ( # ` f ) ) S <_ ( # ` ( ( I ` ( f ` ( k - 1 ) ) ) i^i ( I ` ( f ` k ) ) ) ) ) } ) |