This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Polynomial evaluation maps (additive) group sums to group sums. (Contributed by SN, 13-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlsgsumadd.q | ⊢ 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) | |
| evlsgsumadd.w | ⊢ 𝑊 = ( 𝐼 mPoly 𝑈 ) | ||
| evlsgsumadd.0 | ⊢ 0 = ( 0g ‘ 𝑊 ) | ||
| evlsgsumadd.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) | ||
| evlsgsumadd.p | ⊢ 𝑃 = ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) | ||
| evlsgsumadd.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | ||
| evlsgsumadd.b | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | ||
| evlsgsumadd.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| evlsgsumadd.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | ||
| evlsgsumadd.r | ⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) | ||
| evlsgsumadd.y | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑁 ) → 𝑌 ∈ 𝐵 ) | ||
| evlsgsumadd.n | ⊢ ( 𝜑 → 𝑁 ⊆ ℕ0 ) | ||
| evlsgsumadd.f | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑁 ↦ 𝑌 ) finSupp 0 ) | ||
| Assertion | evlsgsumadd | ⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝑊 Σg ( 𝑥 ∈ 𝑁 ↦ 𝑌 ) ) ) = ( 𝑃 Σg ( 𝑥 ∈ 𝑁 ↦ ( 𝑄 ‘ 𝑌 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlsgsumadd.q | ⊢ 𝑄 = ( ( 𝐼 evalSub 𝑆 ) ‘ 𝑅 ) | |
| 2 | evlsgsumadd.w | ⊢ 𝑊 = ( 𝐼 mPoly 𝑈 ) | |
| 3 | evlsgsumadd.0 | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| 4 | evlsgsumadd.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑅 ) | |
| 5 | evlsgsumadd.p | ⊢ 𝑃 = ( 𝑆 ↑s ( 𝐾 ↑m 𝐼 ) ) | |
| 6 | evlsgsumadd.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | |
| 7 | evlsgsumadd.b | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | |
| 8 | evlsgsumadd.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 9 | evlsgsumadd.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | |
| 10 | evlsgsumadd.r | ⊢ ( 𝜑 → 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) | |
| 11 | evlsgsumadd.y | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑁 ) → 𝑌 ∈ 𝐵 ) | |
| 12 | evlsgsumadd.n | ⊢ ( 𝜑 → 𝑁 ⊆ ℕ0 ) | |
| 13 | evlsgsumadd.f | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑁 ↦ 𝑌 ) finSupp 0 ) | |
| 14 | 4 | subrgring | ⊢ ( 𝑅 ∈ ( SubRing ‘ 𝑆 ) → 𝑈 ∈ Ring ) |
| 15 | 10 14 | syl | ⊢ ( 𝜑 → 𝑈 ∈ Ring ) |
| 16 | 2 8 15 | mplringd | ⊢ ( 𝜑 → 𝑊 ∈ Ring ) |
| 17 | ringcmn | ⊢ ( 𝑊 ∈ Ring → 𝑊 ∈ CMnd ) | |
| 18 | 16 17 | syl | ⊢ ( 𝜑 → 𝑊 ∈ CMnd ) |
| 19 | crngring | ⊢ ( 𝑆 ∈ CRing → 𝑆 ∈ Ring ) | |
| 20 | 9 19 | syl | ⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
| 21 | ovex | ⊢ ( 𝐾 ↑m 𝐼 ) ∈ V | |
| 22 | 20 21 | jctir | ⊢ ( 𝜑 → ( 𝑆 ∈ Ring ∧ ( 𝐾 ↑m 𝐼 ) ∈ V ) ) |
| 23 | 5 | pwsring | ⊢ ( ( 𝑆 ∈ Ring ∧ ( 𝐾 ↑m 𝐼 ) ∈ V ) → 𝑃 ∈ Ring ) |
| 24 | ringmnd | ⊢ ( 𝑃 ∈ Ring → 𝑃 ∈ Mnd ) | |
| 25 | 22 23 24 | 3syl | ⊢ ( 𝜑 → 𝑃 ∈ Mnd ) |
| 26 | nn0ex | ⊢ ℕ0 ∈ V | |
| 27 | 26 | a1i | ⊢ ( 𝜑 → ℕ0 ∈ V ) |
| 28 | 27 12 | ssexd | ⊢ ( 𝜑 → 𝑁 ∈ V ) |
| 29 | 1 2 4 5 6 | evlsrhm | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ ( SubRing ‘ 𝑆 ) ) → 𝑄 ∈ ( 𝑊 RingHom 𝑃 ) ) |
| 30 | 8 9 10 29 | syl3anc | ⊢ ( 𝜑 → 𝑄 ∈ ( 𝑊 RingHom 𝑃 ) ) |
| 31 | rhmghm | ⊢ ( 𝑄 ∈ ( 𝑊 RingHom 𝑃 ) → 𝑄 ∈ ( 𝑊 GrpHom 𝑃 ) ) | |
| 32 | ghmmhm | ⊢ ( 𝑄 ∈ ( 𝑊 GrpHom 𝑃 ) → 𝑄 ∈ ( 𝑊 MndHom 𝑃 ) ) | |
| 33 | 30 31 32 | 3syl | ⊢ ( 𝜑 → 𝑄 ∈ ( 𝑊 MndHom 𝑃 ) ) |
| 34 | 7 3 18 25 28 33 11 13 | gsummptmhm | ⊢ ( 𝜑 → ( 𝑃 Σg ( 𝑥 ∈ 𝑁 ↦ ( 𝑄 ‘ 𝑌 ) ) ) = ( 𝑄 ‘ ( 𝑊 Σg ( 𝑥 ∈ 𝑁 ↦ 𝑌 ) ) ) ) |
| 35 | 34 | eqcomd | ⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝑊 Σg ( 𝑥 ∈ 𝑁 ↦ 𝑌 ) ) ) = ( 𝑃 Σg ( 𝑥 ∈ 𝑁 ↦ ( 𝑄 ‘ 𝑌 ) ) ) ) |