This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Polynomial evaluation maps (additive) group sums to group sums. (Contributed by SN, 13-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlsgsumadd.q | |- Q = ( ( I evalSub S ) ` R ) |
|
| evlsgsumadd.w | |- W = ( I mPoly U ) |
||
| evlsgsumadd.0 | |- .0. = ( 0g ` W ) |
||
| evlsgsumadd.u | |- U = ( S |`s R ) |
||
| evlsgsumadd.p | |- P = ( S ^s ( K ^m I ) ) |
||
| evlsgsumadd.k | |- K = ( Base ` S ) |
||
| evlsgsumadd.b | |- B = ( Base ` W ) |
||
| evlsgsumadd.i | |- ( ph -> I e. V ) |
||
| evlsgsumadd.s | |- ( ph -> S e. CRing ) |
||
| evlsgsumadd.r | |- ( ph -> R e. ( SubRing ` S ) ) |
||
| evlsgsumadd.y | |- ( ( ph /\ x e. N ) -> Y e. B ) |
||
| evlsgsumadd.n | |- ( ph -> N C_ NN0 ) |
||
| evlsgsumadd.f | |- ( ph -> ( x e. N |-> Y ) finSupp .0. ) |
||
| Assertion | evlsgsumadd | |- ( ph -> ( Q ` ( W gsum ( x e. N |-> Y ) ) ) = ( P gsum ( x e. N |-> ( Q ` Y ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlsgsumadd.q | |- Q = ( ( I evalSub S ) ` R ) |
|
| 2 | evlsgsumadd.w | |- W = ( I mPoly U ) |
|
| 3 | evlsgsumadd.0 | |- .0. = ( 0g ` W ) |
|
| 4 | evlsgsumadd.u | |- U = ( S |`s R ) |
|
| 5 | evlsgsumadd.p | |- P = ( S ^s ( K ^m I ) ) |
|
| 6 | evlsgsumadd.k | |- K = ( Base ` S ) |
|
| 7 | evlsgsumadd.b | |- B = ( Base ` W ) |
|
| 8 | evlsgsumadd.i | |- ( ph -> I e. V ) |
|
| 9 | evlsgsumadd.s | |- ( ph -> S e. CRing ) |
|
| 10 | evlsgsumadd.r | |- ( ph -> R e. ( SubRing ` S ) ) |
|
| 11 | evlsgsumadd.y | |- ( ( ph /\ x e. N ) -> Y e. B ) |
|
| 12 | evlsgsumadd.n | |- ( ph -> N C_ NN0 ) |
|
| 13 | evlsgsumadd.f | |- ( ph -> ( x e. N |-> Y ) finSupp .0. ) |
|
| 14 | 4 | subrgring | |- ( R e. ( SubRing ` S ) -> U e. Ring ) |
| 15 | 10 14 | syl | |- ( ph -> U e. Ring ) |
| 16 | 2 8 15 | mplringd | |- ( ph -> W e. Ring ) |
| 17 | ringcmn | |- ( W e. Ring -> W e. CMnd ) |
|
| 18 | 16 17 | syl | |- ( ph -> W e. CMnd ) |
| 19 | crngring | |- ( S e. CRing -> S e. Ring ) |
|
| 20 | 9 19 | syl | |- ( ph -> S e. Ring ) |
| 21 | ovex | |- ( K ^m I ) e. _V |
|
| 22 | 20 21 | jctir | |- ( ph -> ( S e. Ring /\ ( K ^m I ) e. _V ) ) |
| 23 | 5 | pwsring | |- ( ( S e. Ring /\ ( K ^m I ) e. _V ) -> P e. Ring ) |
| 24 | ringmnd | |- ( P e. Ring -> P e. Mnd ) |
|
| 25 | 22 23 24 | 3syl | |- ( ph -> P e. Mnd ) |
| 26 | nn0ex | |- NN0 e. _V |
|
| 27 | 26 | a1i | |- ( ph -> NN0 e. _V ) |
| 28 | 27 12 | ssexd | |- ( ph -> N e. _V ) |
| 29 | 1 2 4 5 6 | evlsrhm | |- ( ( I e. V /\ S e. CRing /\ R e. ( SubRing ` S ) ) -> Q e. ( W RingHom P ) ) |
| 30 | 8 9 10 29 | syl3anc | |- ( ph -> Q e. ( W RingHom P ) ) |
| 31 | rhmghm | |- ( Q e. ( W RingHom P ) -> Q e. ( W GrpHom P ) ) |
|
| 32 | ghmmhm | |- ( Q e. ( W GrpHom P ) -> Q e. ( W MndHom P ) ) |
|
| 33 | 30 31 32 | 3syl | |- ( ph -> Q e. ( W MndHom P ) ) |
| 34 | 7 3 18 25 28 33 11 13 | gsummptmhm | |- ( ph -> ( P gsum ( x e. N |-> ( Q ` Y ) ) ) = ( Q ` ( W gsum ( x e. N |-> Y ) ) ) ) |
| 35 | 34 | eqcomd | |- ( ph -> ( Q ` ( W gsum ( x e. N |-> Y ) ) ) = ( P gsum ( x e. N |-> ( Q ` Y ) ) ) ) |