This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Give a formula for the evaluation of a polynomial given assignments from variables to values. (Contributed by SN, 5-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlvvval.q | ⊢ 𝑄 = ( 𝐼 eval 𝑅 ) | |
| evlvvval.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | ||
| evlvvval.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| evlvvval.d | ⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } | ||
| evlvvval.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
| evlvvval.m | ⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) | ||
| evlvvval.w | ⊢ ↑ = ( .g ‘ 𝑀 ) | ||
| evlvvval.x | ⊢ · = ( .r ‘ 𝑅 ) | ||
| evlvvval.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| evlvvval.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | ||
| evlvvval.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) | ||
| evlvvval.a | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) | ||
| Assertion | evlvvval | ⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝐹 ) ‘ 𝐴 ) = ( 𝑅 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlvvval.q | ⊢ 𝑄 = ( 𝐼 eval 𝑅 ) | |
| 2 | evlvvval.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| 3 | evlvvval.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 4 | evlvvval.d | ⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } | |
| 5 | evlvvval.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 6 | evlvvval.m | ⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) | |
| 7 | evlvvval.w | ⊢ ↑ = ( .g ‘ 𝑀 ) | |
| 8 | evlvvval.x | ⊢ · = ( .r ‘ 𝑅 ) | |
| 9 | evlvvval.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 10 | evlvvval.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | |
| 11 | evlvvval.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) | |
| 12 | evlvvval.a | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝐾 ↑m 𝐼 ) ) | |
| 13 | eqid | ⊢ ( ( 𝐼 evalSub 𝑅 ) ‘ ( Base ‘ 𝑅 ) ) = ( ( 𝐼 evalSub 𝑅 ) ‘ ( Base ‘ 𝑅 ) ) | |
| 14 | eqid | ⊢ ( 𝐼 mPoly ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ) = ( 𝐼 mPoly ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ) | |
| 15 | eqid | ⊢ ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) = ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) | |
| 16 | eqid | ⊢ ( Base ‘ ( 𝐼 mPoly ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ) ) = ( Base ‘ ( 𝐼 mPoly ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ) ) | |
| 17 | 10 | crngringd | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 18 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 19 | 18 | subrgid | ⊢ ( 𝑅 ∈ Ring → ( Base ‘ 𝑅 ) ∈ ( SubRing ‘ 𝑅 ) ) |
| 20 | 17 19 | syl | ⊢ ( 𝜑 → ( Base ‘ 𝑅 ) ∈ ( SubRing ‘ 𝑅 ) ) |
| 21 | 18 | ressid | ⊢ ( 𝑅 ∈ CRing → ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) = 𝑅 ) |
| 22 | 10 21 | syl | ⊢ ( 𝜑 → ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) = 𝑅 ) |
| 23 | 22 | oveq2d | ⊢ ( 𝜑 → ( 𝐼 mPoly ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ) = ( 𝐼 mPoly 𝑅 ) ) |
| 24 | 23 2 | eqtr4di | ⊢ ( 𝜑 → ( 𝐼 mPoly ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ) = 𝑃 ) |
| 25 | 24 | fveq2d | ⊢ ( 𝜑 → ( Base ‘ ( 𝐼 mPoly ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ) ) = ( Base ‘ 𝑃 ) ) |
| 26 | 25 3 | eqtr4di | ⊢ ( 𝜑 → ( Base ‘ ( 𝐼 mPoly ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ) ) = 𝐵 ) |
| 27 | 11 26 | eleqtrrd | ⊢ ( 𝜑 → 𝐹 ∈ ( Base ‘ ( 𝐼 mPoly ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ) ) ) |
| 28 | 13 1 14 15 16 9 10 20 27 | evlsevl | ⊢ ( 𝜑 → ( ( ( 𝐼 evalSub 𝑅 ) ‘ ( Base ‘ 𝑅 ) ) ‘ 𝐹 ) = ( 𝑄 ‘ 𝐹 ) ) |
| 29 | 28 | fveq1d | ⊢ ( 𝜑 → ( ( ( ( 𝐼 evalSub 𝑅 ) ‘ ( Base ‘ 𝑅 ) ) ‘ 𝐹 ) ‘ 𝐴 ) = ( ( 𝑄 ‘ 𝐹 ) ‘ 𝐴 ) ) |
| 30 | 13 14 16 15 4 5 6 7 8 9 10 20 27 12 | evlsvvval | ⊢ ( 𝜑 → ( ( ( ( 𝐼 evalSub 𝑅 ) ‘ ( Base ‘ 𝑅 ) ) ‘ 𝐹 ) ‘ 𝐴 ) = ( 𝑅 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) ) ) |
| 31 | 29 30 | eqtr3d | ⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝐹 ) ‘ 𝐴 ) = ( 𝑅 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ 𝑏 ) · ( 𝑀 Σg ( 𝑖 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑖 ) ↑ ( 𝐴 ‘ 𝑖 ) ) ) ) ) ) ) ) |