This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function F mapping polynomials p to their evaluation at a given point X is a ring homomorphism. (Contributed by metakunt, 19-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evl1maprhm.q | ⊢ 𝑂 = ( eval1 ‘ 𝑅 ) | |
| evl1maprhm.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | ||
| evl1maprhm.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| evl1maprhm.u | ⊢ 𝑈 = ( Base ‘ 𝑃 ) | ||
| evl1maprhm.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | ||
| evl1maprhm.y | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| evl1maprhm.f | ⊢ 𝐹 = ( 𝑝 ∈ 𝑈 ↦ ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑋 ) ) | ||
| Assertion | evl1maprhm | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑃 RingHom 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evl1maprhm.q | ⊢ 𝑂 = ( eval1 ‘ 𝑅 ) | |
| 2 | evl1maprhm.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| 3 | evl1maprhm.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 4 | evl1maprhm.u | ⊢ 𝑈 = ( Base ‘ 𝑃 ) | |
| 5 | evl1maprhm.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | |
| 6 | evl1maprhm.y | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 7 | evl1maprhm.f | ⊢ 𝐹 = ( 𝑝 ∈ 𝑈 ↦ ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑋 ) ) | |
| 8 | 7 | a1i | ⊢ ( 𝜑 → 𝐹 = ( 𝑝 ∈ 𝑈 ↦ ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑋 ) ) ) |
| 9 | ssidd | ⊢ ( 𝜑 → ( Base ‘ 𝑅 ) ⊆ ( Base ‘ 𝑅 ) ) | |
| 10 | 5 | elexd | ⊢ ( 𝜑 → 𝑅 ∈ V ) |
| 11 | 5 | crngringd | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 12 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 13 | 12 | subrgid | ⊢ ( 𝑅 ∈ Ring → ( Base ‘ 𝑅 ) ∈ ( SubRing ‘ 𝑅 ) ) |
| 14 | 11 13 | syl | ⊢ ( 𝜑 → ( Base ‘ 𝑅 ) ∈ ( SubRing ‘ 𝑅 ) ) |
| 15 | 14 | elexd | ⊢ ( 𝜑 → ( Base ‘ 𝑅 ) ∈ V ) |
| 16 | eqid | ⊢ ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) = ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) | |
| 17 | 16 12 | ressid2 | ⊢ ( ( ( Base ‘ 𝑅 ) ⊆ ( Base ‘ 𝑅 ) ∧ 𝑅 ∈ V ∧ ( Base ‘ 𝑅 ) ∈ V ) → ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) = 𝑅 ) |
| 18 | 9 10 15 17 | syl3anc | ⊢ ( 𝜑 → ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) = 𝑅 ) |
| 19 | eqcom | ⊢ ( ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) = 𝑅 ↔ 𝑅 = ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ) | |
| 20 | 19 | imbi2i | ⊢ ( ( 𝜑 → ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) = 𝑅 ) ↔ ( 𝜑 → 𝑅 = ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ) ) |
| 21 | 18 20 | mpbi | ⊢ ( 𝜑 → 𝑅 = ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ) |
| 22 | 21 | fveq2d | ⊢ ( 𝜑 → ( Poly1 ‘ 𝑅 ) = ( Poly1 ‘ ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ) ) |
| 23 | 2 22 | eqtrid | ⊢ ( 𝜑 → 𝑃 = ( Poly1 ‘ ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ) ) |
| 24 | 23 | fveq2d | ⊢ ( 𝜑 → ( Base ‘ 𝑃 ) = ( Base ‘ ( Poly1 ‘ ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ) ) ) |
| 25 | 4 24 | eqtrid | ⊢ ( 𝜑 → 𝑈 = ( Base ‘ ( Poly1 ‘ ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ) ) ) |
| 26 | 1 12 | evl1fval1 | ⊢ 𝑂 = ( 𝑅 evalSub1 ( Base ‘ 𝑅 ) ) |
| 27 | 26 | a1i | ⊢ ( 𝜑 → 𝑂 = ( 𝑅 evalSub1 ( Base ‘ 𝑅 ) ) ) |
| 28 | 27 | fveq1d | ⊢ ( 𝜑 → ( 𝑂 ‘ 𝑝 ) = ( ( 𝑅 evalSub1 ( Base ‘ 𝑅 ) ) ‘ 𝑝 ) ) |
| 29 | 28 | fveq1d | ⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑋 ) = ( ( ( 𝑅 evalSub1 ( Base ‘ 𝑅 ) ) ‘ 𝑝 ) ‘ 𝑋 ) ) |
| 30 | 25 29 | mpteq12dv | ⊢ ( 𝜑 → ( 𝑝 ∈ 𝑈 ↦ ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑋 ) ) = ( 𝑝 ∈ ( Base ‘ ( Poly1 ‘ ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ) ) ↦ ( ( ( 𝑅 evalSub1 ( Base ‘ 𝑅 ) ) ‘ 𝑝 ) ‘ 𝑋 ) ) ) |
| 31 | eqid | ⊢ ( 𝑅 evalSub1 ( Base ‘ 𝑅 ) ) = ( 𝑅 evalSub1 ( Base ‘ 𝑅 ) ) | |
| 32 | eqid | ⊢ ( Poly1 ‘ ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ) = ( Poly1 ‘ ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ) | |
| 33 | eqid | ⊢ ( Base ‘ ( Poly1 ‘ ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ) ) = ( Base ‘ ( Poly1 ‘ ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ) ) | |
| 34 | 6 3 | eleqtrdi | ⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝑅 ) ) |
| 35 | eqid | ⊢ ( 𝑝 ∈ ( Base ‘ ( Poly1 ‘ ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ) ) ↦ ( ( ( 𝑅 evalSub1 ( Base ‘ 𝑅 ) ) ‘ 𝑝 ) ‘ 𝑋 ) ) = ( 𝑝 ∈ ( Base ‘ ( Poly1 ‘ ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ) ) ↦ ( ( ( 𝑅 evalSub1 ( Base ‘ 𝑅 ) ) ‘ 𝑝 ) ‘ 𝑋 ) ) | |
| 36 | 31 32 12 33 5 14 34 35 | evls1maprhm | ⊢ ( 𝜑 → ( 𝑝 ∈ ( Base ‘ ( Poly1 ‘ ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ) ) ↦ ( ( ( 𝑅 evalSub1 ( Base ‘ 𝑅 ) ) ‘ 𝑝 ) ‘ 𝑋 ) ) ∈ ( ( Poly1 ‘ ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ) RingHom 𝑅 ) ) |
| 37 | 30 36 | eqeltrd | ⊢ ( 𝜑 → ( 𝑝 ∈ 𝑈 ↦ ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑋 ) ) ∈ ( ( Poly1 ‘ ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ) RingHom 𝑅 ) ) |
| 38 | 2 | a1i | ⊢ ( 𝜑 → 𝑃 = ( Poly1 ‘ 𝑅 ) ) |
| 39 | 18 | eqcomd | ⊢ ( 𝜑 → 𝑅 = ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ) |
| 40 | 39 | fveq2d | ⊢ ( 𝜑 → ( Poly1 ‘ 𝑅 ) = ( Poly1 ‘ ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ) ) |
| 41 | 38 40 | eqtr2d | ⊢ ( 𝜑 → ( Poly1 ‘ ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ) = 𝑃 ) |
| 42 | 41 | oveq1d | ⊢ ( 𝜑 → ( ( Poly1 ‘ ( 𝑅 ↾s ( Base ‘ 𝑅 ) ) ) RingHom 𝑅 ) = ( 𝑃 RingHom 𝑅 ) ) |
| 43 | 37 42 | eleqtrd | ⊢ ( 𝜑 → ( 𝑝 ∈ 𝑈 ↦ ( ( 𝑂 ‘ 𝑝 ) ‘ 𝑋 ) ) ∈ ( 𝑃 RingHom 𝑅 ) ) |
| 44 | 8 43 | eqeltrd | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑃 RingHom 𝑅 ) ) |