This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Variant of fveval1fvcl for the subring evaluation function evalSub1 (Contributed by Thierry Arnoux, 22-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evls1maprhm.q | ⊢ 𝑂 = ( 𝑅 evalSub1 𝑆 ) | |
| evls1maprhm.p | ⊢ 𝑃 = ( Poly1 ‘ ( 𝑅 ↾s 𝑆 ) ) | ||
| evls1maprhm.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| evls1maprhm.u | ⊢ 𝑈 = ( Base ‘ 𝑃 ) | ||
| evls1maprhm.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | ||
| evls1maprhm.s | ⊢ ( 𝜑 → 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) | ||
| evls1fvcl.1 | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| evls1fvcl.2 | ⊢ ( 𝜑 → 𝑀 ∈ 𝑈 ) | ||
| Assertion | evls1fvcl | ⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evls1maprhm.q | ⊢ 𝑂 = ( 𝑅 evalSub1 𝑆 ) | |
| 2 | evls1maprhm.p | ⊢ 𝑃 = ( Poly1 ‘ ( 𝑅 ↾s 𝑆 ) ) | |
| 3 | evls1maprhm.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 4 | evls1maprhm.u | ⊢ 𝑈 = ( Base ‘ 𝑃 ) | |
| 5 | evls1maprhm.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | |
| 6 | evls1maprhm.s | ⊢ ( 𝜑 → 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) | |
| 7 | evls1fvcl.1 | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 8 | evls1fvcl.2 | ⊢ ( 𝜑 → 𝑀 ∈ 𝑈 ) | |
| 9 | eqid | ⊢ ( 𝑅 ↾s 𝑆 ) = ( 𝑅 ↾s 𝑆 ) | |
| 10 | eqid | ⊢ ( eval1 ‘ 𝑅 ) = ( eval1 ‘ 𝑅 ) | |
| 11 | 1 3 2 9 4 10 5 6 | ressply1evl | ⊢ ( 𝜑 → 𝑂 = ( ( eval1 ‘ 𝑅 ) ↾ 𝑈 ) ) |
| 12 | 11 | fveq1d | ⊢ ( 𝜑 → ( 𝑂 ‘ 𝑀 ) = ( ( ( eval1 ‘ 𝑅 ) ↾ 𝑈 ) ‘ 𝑀 ) ) |
| 13 | 8 | fvresd | ⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝑅 ) ↾ 𝑈 ) ‘ 𝑀 ) = ( ( eval1 ‘ 𝑅 ) ‘ 𝑀 ) ) |
| 14 | 12 13 | eqtrd | ⊢ ( 𝜑 → ( 𝑂 ‘ 𝑀 ) = ( ( eval1 ‘ 𝑅 ) ‘ 𝑀 ) ) |
| 15 | 14 | fveq1d | ⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) = ( ( ( eval1 ‘ 𝑅 ) ‘ 𝑀 ) ‘ 𝑌 ) ) |
| 16 | eqid | ⊢ ( Poly1 ‘ 𝑅 ) = ( Poly1 ‘ 𝑅 ) | |
| 17 | eqid | ⊢ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) = ( Base ‘ ( Poly1 ‘ 𝑅 ) ) | |
| 18 | eqid | ⊢ ( ( Poly1 ‘ 𝑅 ) ↾s 𝑈 ) = ( ( Poly1 ‘ 𝑅 ) ↾s 𝑈 ) | |
| 19 | 16 9 2 4 6 18 | ressply1bas | ⊢ ( 𝜑 → 𝑈 = ( Base ‘ ( ( Poly1 ‘ 𝑅 ) ↾s 𝑈 ) ) ) |
| 20 | 18 17 | ressbasss | ⊢ ( Base ‘ ( ( Poly1 ‘ 𝑅 ) ↾s 𝑈 ) ) ⊆ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) |
| 21 | 19 20 | eqsstrdi | ⊢ ( 𝜑 → 𝑈 ⊆ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) |
| 22 | 21 8 | sseldd | ⊢ ( 𝜑 → 𝑀 ∈ ( Base ‘ ( Poly1 ‘ 𝑅 ) ) ) |
| 23 | 10 16 3 17 5 7 22 | fveval1fvcl | ⊢ ( 𝜑 → ( ( ( eval1 ‘ 𝑅 ) ‘ 𝑀 ) ‘ 𝑌 ) ∈ 𝐵 ) |
| 24 | 15 23 | eqeltrd | ⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ∈ 𝐵 ) |