This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the evaluation map for the univariate polynomial algebra. The function ( S evalSub1 R ) : V --> ( S ^m S ) makes sense when S is a ring and R is a subring of S , and where V is the set of polynomials in ( Poly1R ) . This function maps an element of the formal polynomial algebra (with coefficients in R ) to a function from assignments to the variable from S into an element of S formed by evaluating the polynomial with the given assignment. (Contributed by Mario Carneiro, 12-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-evls1 | ⊢ evalSub1 = ( 𝑠 ∈ V , 𝑟 ∈ 𝒫 ( Base ‘ 𝑠 ) ↦ ⦋ ( Base ‘ 𝑠 ) / 𝑏 ⦌ ( ( 𝑥 ∈ ( 𝑏 ↑m ( 𝑏 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝑏 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑠 ) ‘ 𝑟 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ces1 | ⊢ evalSub1 | |
| 1 | vs | ⊢ 𝑠 | |
| 2 | cvv | ⊢ V | |
| 3 | vr | ⊢ 𝑟 | |
| 4 | cbs | ⊢ Base | |
| 5 | 1 | cv | ⊢ 𝑠 |
| 6 | 5 4 | cfv | ⊢ ( Base ‘ 𝑠 ) |
| 7 | 6 | cpw | ⊢ 𝒫 ( Base ‘ 𝑠 ) |
| 8 | vb | ⊢ 𝑏 | |
| 9 | vx | ⊢ 𝑥 | |
| 10 | 8 | cv | ⊢ 𝑏 |
| 11 | cmap | ⊢ ↑m | |
| 12 | c1o | ⊢ 1o | |
| 13 | 10 12 11 | co | ⊢ ( 𝑏 ↑m 1o ) |
| 14 | 10 13 11 | co | ⊢ ( 𝑏 ↑m ( 𝑏 ↑m 1o ) ) |
| 15 | 9 | cv | ⊢ 𝑥 |
| 16 | vy | ⊢ 𝑦 | |
| 17 | 16 | cv | ⊢ 𝑦 |
| 18 | 17 | csn | ⊢ { 𝑦 } |
| 19 | 12 18 | cxp | ⊢ ( 1o × { 𝑦 } ) |
| 20 | 16 10 19 | cmpt | ⊢ ( 𝑦 ∈ 𝑏 ↦ ( 1o × { 𝑦 } ) ) |
| 21 | 15 20 | ccom | ⊢ ( 𝑥 ∘ ( 𝑦 ∈ 𝑏 ↦ ( 1o × { 𝑦 } ) ) ) |
| 22 | 9 14 21 | cmpt | ⊢ ( 𝑥 ∈ ( 𝑏 ↑m ( 𝑏 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝑏 ↦ ( 1o × { 𝑦 } ) ) ) ) |
| 23 | ces | ⊢ evalSub | |
| 24 | 12 5 23 | co | ⊢ ( 1o evalSub 𝑠 ) |
| 25 | 3 | cv | ⊢ 𝑟 |
| 26 | 25 24 | cfv | ⊢ ( ( 1o evalSub 𝑠 ) ‘ 𝑟 ) |
| 27 | 22 26 | ccom | ⊢ ( ( 𝑥 ∈ ( 𝑏 ↑m ( 𝑏 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝑏 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑠 ) ‘ 𝑟 ) ) |
| 28 | 8 6 27 | csb | ⊢ ⦋ ( Base ‘ 𝑠 ) / 𝑏 ⦌ ( ( 𝑥 ∈ ( 𝑏 ↑m ( 𝑏 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝑏 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑠 ) ‘ 𝑟 ) ) |
| 29 | 1 3 2 7 28 | cmpo | ⊢ ( 𝑠 ∈ V , 𝑟 ∈ 𝒫 ( Base ‘ 𝑠 ) ↦ ⦋ ( Base ‘ 𝑠 ) / 𝑏 ⦌ ( ( 𝑥 ∈ ( 𝑏 ↑m ( 𝑏 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝑏 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑠 ) ‘ 𝑟 ) ) ) |
| 30 | 0 29 | wceq | ⊢ evalSub1 = ( 𝑠 ∈ V , 𝑟 ∈ 𝒫 ( Base ‘ 𝑠 ) ↦ ⦋ ( Base ‘ 𝑠 ) / 𝑏 ⦌ ( ( 𝑥 ∈ ( 𝑏 ↑m ( 𝑏 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝑏 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑠 ) ‘ 𝑟 ) ) ) |