This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the simple/same ring evaluation map. (Contributed by Mario Carneiro, 12-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evl1fval.o | ⊢ 𝑂 = ( eval1 ‘ 𝑅 ) | |
| evl1fval.q | ⊢ 𝑄 = ( 1o eval 𝑅 ) | ||
| evl1fval.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| Assertion | evl1fval | ⊢ 𝑂 = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ 𝑄 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evl1fval.o | ⊢ 𝑂 = ( eval1 ‘ 𝑅 ) | |
| 2 | evl1fval.q | ⊢ 𝑄 = ( 1o eval 𝑅 ) | |
| 3 | evl1fval.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 4 | fvexd | ⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) ∈ V ) | |
| 5 | id | ⊢ ( 𝑏 = ( Base ‘ 𝑟 ) → 𝑏 = ( Base ‘ 𝑟 ) ) | |
| 6 | fveq2 | ⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = ( Base ‘ 𝑅 ) ) | |
| 7 | 6 3 | eqtr4di | ⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = 𝐵 ) |
| 8 | 5 7 | sylan9eqr | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( Base ‘ 𝑟 ) ) → 𝑏 = 𝐵 ) |
| 9 | 8 | oveq1d | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( Base ‘ 𝑟 ) ) → ( 𝑏 ↑m 1o ) = ( 𝐵 ↑m 1o ) ) |
| 10 | 8 9 | oveq12d | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( Base ‘ 𝑟 ) ) → ( 𝑏 ↑m ( 𝑏 ↑m 1o ) ) = ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ) |
| 11 | 8 | mpteq1d | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( Base ‘ 𝑟 ) ) → ( 𝑦 ∈ 𝑏 ↦ ( 1o × { 𝑦 } ) ) = ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) |
| 12 | 11 | coeq2d | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( Base ‘ 𝑟 ) ) → ( 𝑥 ∘ ( 𝑦 ∈ 𝑏 ↦ ( 1o × { 𝑦 } ) ) ) = ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) |
| 13 | 10 12 | mpteq12dv | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( Base ‘ 𝑟 ) ) → ( 𝑥 ∈ ( 𝑏 ↑m ( 𝑏 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝑏 ↦ ( 1o × { 𝑦 } ) ) ) ) = ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ) |
| 14 | simpl | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( Base ‘ 𝑟 ) ) → 𝑟 = 𝑅 ) | |
| 15 | 14 | oveq2d | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( Base ‘ 𝑟 ) ) → ( 1o eval 𝑟 ) = ( 1o eval 𝑅 ) ) |
| 16 | 15 2 | eqtr4di | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( Base ‘ 𝑟 ) ) → ( 1o eval 𝑟 ) = 𝑄 ) |
| 17 | 13 16 | coeq12d | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑏 = ( Base ‘ 𝑟 ) ) → ( ( 𝑥 ∈ ( 𝑏 ↑m ( 𝑏 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝑏 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( 1o eval 𝑟 ) ) = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ 𝑄 ) ) |
| 18 | 4 17 | csbied | ⊢ ( 𝑟 = 𝑅 → ⦋ ( Base ‘ 𝑟 ) / 𝑏 ⦌ ( ( 𝑥 ∈ ( 𝑏 ↑m ( 𝑏 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝑏 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( 1o eval 𝑟 ) ) = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ 𝑄 ) ) |
| 19 | df-evl1 | ⊢ eval1 = ( 𝑟 ∈ V ↦ ⦋ ( Base ‘ 𝑟 ) / 𝑏 ⦌ ( ( 𝑥 ∈ ( 𝑏 ↑m ( 𝑏 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝑏 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( 1o eval 𝑟 ) ) ) | |
| 20 | ovex | ⊢ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ∈ V | |
| 21 | 20 | mptex | ⊢ ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∈ V |
| 22 | 2 | ovexi | ⊢ 𝑄 ∈ V |
| 23 | 21 22 | coex | ⊢ ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ 𝑄 ) ∈ V |
| 24 | 18 19 23 | fvmpt | ⊢ ( 𝑅 ∈ V → ( eval1 ‘ 𝑅 ) = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ 𝑄 ) ) |
| 25 | 1 24 | eqtrid | ⊢ ( 𝑅 ∈ V → 𝑂 = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ 𝑄 ) ) |
| 26 | fvprc | ⊢ ( ¬ 𝑅 ∈ V → ( eval1 ‘ 𝑅 ) = ∅ ) | |
| 27 | 1 26 | eqtrid | ⊢ ( ¬ 𝑅 ∈ V → 𝑂 = ∅ ) |
| 28 | co02 | ⊢ ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ∅ ) = ∅ | |
| 29 | 27 28 | eqtr4di | ⊢ ( ¬ 𝑅 ∈ V → 𝑂 = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ∅ ) ) |
| 30 | df-evl | ⊢ eval = ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ( ( 𝑖 evalSub 𝑟 ) ‘ ( Base ‘ 𝑟 ) ) ) | |
| 31 | 30 | reldmmpo | ⊢ Rel dom eval |
| 32 | 31 | ovprc2 | ⊢ ( ¬ 𝑅 ∈ V → ( 1o eval 𝑅 ) = ∅ ) |
| 33 | 2 32 | eqtrid | ⊢ ( ¬ 𝑅 ∈ V → 𝑄 = ∅ ) |
| 34 | 33 | coeq2d | ⊢ ( ¬ 𝑅 ∈ V → ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ 𝑄 ) = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ∅ ) ) |
| 35 | 29 34 | eqtr4d | ⊢ ( ¬ 𝑅 ∈ V → 𝑂 = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ 𝑄 ) ) |
| 36 | 25 35 | pm2.61i | ⊢ 𝑂 = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ 𝑄 ) |