This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for evl1fval1 . (Contributed by AV, 11-Sep-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evl1fval1.q | ⊢ 𝑄 = ( eval1 ‘ 𝑅 ) | |
| evl1fval1.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| Assertion | evl1fval1lem | ⊢ ( 𝑅 ∈ 𝑉 → 𝑄 = ( 𝑅 evalSub1 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evl1fval1.q | ⊢ 𝑄 = ( eval1 ‘ 𝑅 ) | |
| 2 | evl1fval1.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 3 | eqid | ⊢ ( eval1 ‘ 𝑅 ) = ( eval1 ‘ 𝑅 ) | |
| 4 | eqid | ⊢ ( 1o eval 𝑅 ) = ( 1o eval 𝑅 ) | |
| 5 | 3 4 2 | evl1fval | ⊢ ( eval1 ‘ 𝑅 ) = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( 1o eval 𝑅 ) ) |
| 6 | 1 | a1i | ⊢ ( 𝑅 ∈ 𝑉 → 𝑄 = ( eval1 ‘ 𝑅 ) ) |
| 7 | 2 | fvexi | ⊢ 𝐵 ∈ V |
| 8 | 7 | pwid | ⊢ 𝐵 ∈ 𝒫 𝐵 |
| 9 | eqid | ⊢ ( 𝑅 evalSub1 𝐵 ) = ( 𝑅 evalSub1 𝐵 ) | |
| 10 | eqid | ⊢ ( 1o evalSub 𝑅 ) = ( 1o evalSub 𝑅 ) | |
| 11 | 9 10 2 | evls1fval | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐵 ∈ 𝒫 𝐵 ) → ( 𝑅 evalSub1 𝐵 ) = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑅 ) ‘ 𝐵 ) ) ) |
| 12 | 8 11 | mpan2 | ⊢ ( 𝑅 ∈ 𝑉 → ( 𝑅 evalSub1 𝐵 ) = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑅 ) ‘ 𝐵 ) ) ) |
| 13 | 4 2 | evlval | ⊢ ( 1o eval 𝑅 ) = ( ( 1o evalSub 𝑅 ) ‘ 𝐵 ) |
| 14 | 13 | eqcomi | ⊢ ( ( 1o evalSub 𝑅 ) ‘ 𝐵 ) = ( 1o eval 𝑅 ) |
| 15 | 14 | coeq2i | ⊢ ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( ( 1o evalSub 𝑅 ) ‘ 𝐵 ) ) = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( 1o eval 𝑅 ) ) |
| 16 | 12 15 | eqtrdi | ⊢ ( 𝑅 ∈ 𝑉 → ( 𝑅 evalSub1 𝐵 ) = ( ( 𝑥 ∈ ( 𝐵 ↑m ( 𝐵 ↑m 1o ) ) ↦ ( 𝑥 ∘ ( 𝑦 ∈ 𝐵 ↦ ( 1o × { 𝑦 } ) ) ) ) ∘ ( 1o eval 𝑅 ) ) ) |
| 17 | 5 6 16 | 3eqtr4a | ⊢ ( 𝑅 ∈ 𝑉 → 𝑄 = ( 𝑅 evalSub1 𝐵 ) ) |