This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existential uniqueness via an indirect equality. (Contributed by NM, 11-Oct-2010)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | euind.1 | ⊢ 𝐵 ∈ V | |
| euind.2 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | euind | ⊢ ( ( ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 ∧ 𝜓 ) → 𝐴 = 𝐵 ) ∧ ∃ 𝑥 𝜑 ) → ∃! 𝑧 ∀ 𝑥 ( 𝜑 → 𝑧 = 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euind.1 | ⊢ 𝐵 ∈ V | |
| 2 | euind.2 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| 3 | 2 | cbvexvw | ⊢ ( ∃ 𝑥 𝜑 ↔ ∃ 𝑦 𝜓 ) |
| 4 | 1 | isseti | ⊢ ∃ 𝑧 𝑧 = 𝐵 |
| 5 | 4 | biantrur | ⊢ ( 𝜓 ↔ ( ∃ 𝑧 𝑧 = 𝐵 ∧ 𝜓 ) ) |
| 6 | 5 | exbii | ⊢ ( ∃ 𝑦 𝜓 ↔ ∃ 𝑦 ( ∃ 𝑧 𝑧 = 𝐵 ∧ 𝜓 ) ) |
| 7 | 19.41v | ⊢ ( ∃ 𝑧 ( 𝑧 = 𝐵 ∧ 𝜓 ) ↔ ( ∃ 𝑧 𝑧 = 𝐵 ∧ 𝜓 ) ) | |
| 8 | 7 | exbii | ⊢ ( ∃ 𝑦 ∃ 𝑧 ( 𝑧 = 𝐵 ∧ 𝜓 ) ↔ ∃ 𝑦 ( ∃ 𝑧 𝑧 = 𝐵 ∧ 𝜓 ) ) |
| 9 | excom | ⊢ ( ∃ 𝑦 ∃ 𝑧 ( 𝑧 = 𝐵 ∧ 𝜓 ) ↔ ∃ 𝑧 ∃ 𝑦 ( 𝑧 = 𝐵 ∧ 𝜓 ) ) | |
| 10 | 6 8 9 | 3bitr2i | ⊢ ( ∃ 𝑦 𝜓 ↔ ∃ 𝑧 ∃ 𝑦 ( 𝑧 = 𝐵 ∧ 𝜓 ) ) |
| 11 | 3 10 | bitri | ⊢ ( ∃ 𝑥 𝜑 ↔ ∃ 𝑧 ∃ 𝑦 ( 𝑧 = 𝐵 ∧ 𝜓 ) ) |
| 12 | eqeq2 | ⊢ ( 𝐴 = 𝐵 → ( 𝑧 = 𝐴 ↔ 𝑧 = 𝐵 ) ) | |
| 13 | 12 | imim2i | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) → 𝐴 = 𝐵 ) → ( ( 𝜑 ∧ 𝜓 ) → ( 𝑧 = 𝐴 ↔ 𝑧 = 𝐵 ) ) ) |
| 14 | biimpr | ⊢ ( ( 𝑧 = 𝐴 ↔ 𝑧 = 𝐵 ) → ( 𝑧 = 𝐵 → 𝑧 = 𝐴 ) ) | |
| 15 | 14 | imim2i | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) → ( 𝑧 = 𝐴 ↔ 𝑧 = 𝐵 ) ) → ( ( 𝜑 ∧ 𝜓 ) → ( 𝑧 = 𝐵 → 𝑧 = 𝐴 ) ) ) |
| 16 | an31 | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑧 = 𝐵 ) ↔ ( ( 𝑧 = 𝐵 ∧ 𝜓 ) ∧ 𝜑 ) ) | |
| 17 | 16 | imbi1i | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑧 = 𝐵 ) → 𝑧 = 𝐴 ) ↔ ( ( ( 𝑧 = 𝐵 ∧ 𝜓 ) ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) |
| 18 | impexp | ⊢ ( ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝑧 = 𝐵 ) → 𝑧 = 𝐴 ) ↔ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑧 = 𝐵 → 𝑧 = 𝐴 ) ) ) | |
| 19 | impexp | ⊢ ( ( ( ( 𝑧 = 𝐵 ∧ 𝜓 ) ∧ 𝜑 ) → 𝑧 = 𝐴 ) ↔ ( ( 𝑧 = 𝐵 ∧ 𝜓 ) → ( 𝜑 → 𝑧 = 𝐴 ) ) ) | |
| 20 | 17 18 19 | 3bitr3i | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) → ( 𝑧 = 𝐵 → 𝑧 = 𝐴 ) ) ↔ ( ( 𝑧 = 𝐵 ∧ 𝜓 ) → ( 𝜑 → 𝑧 = 𝐴 ) ) ) |
| 21 | 15 20 | sylib | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) → ( 𝑧 = 𝐴 ↔ 𝑧 = 𝐵 ) ) → ( ( 𝑧 = 𝐵 ∧ 𝜓 ) → ( 𝜑 → 𝑧 = 𝐴 ) ) ) |
| 22 | 13 21 | syl | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) → 𝐴 = 𝐵 ) → ( ( 𝑧 = 𝐵 ∧ 𝜓 ) → ( 𝜑 → 𝑧 = 𝐴 ) ) ) |
| 23 | 22 | 2alimi | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 ∧ 𝜓 ) → 𝐴 = 𝐵 ) → ∀ 𝑥 ∀ 𝑦 ( ( 𝑧 = 𝐵 ∧ 𝜓 ) → ( 𝜑 → 𝑧 = 𝐴 ) ) ) |
| 24 | 19.23v | ⊢ ( ∀ 𝑦 ( ( 𝑧 = 𝐵 ∧ 𝜓 ) → ( 𝜑 → 𝑧 = 𝐴 ) ) ↔ ( ∃ 𝑦 ( 𝑧 = 𝐵 ∧ 𝜓 ) → ( 𝜑 → 𝑧 = 𝐴 ) ) ) | |
| 25 | 24 | albii | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑧 = 𝐵 ∧ 𝜓 ) → ( 𝜑 → 𝑧 = 𝐴 ) ) ↔ ∀ 𝑥 ( ∃ 𝑦 ( 𝑧 = 𝐵 ∧ 𝜓 ) → ( 𝜑 → 𝑧 = 𝐴 ) ) ) |
| 26 | 19.21v | ⊢ ( ∀ 𝑥 ( ∃ 𝑦 ( 𝑧 = 𝐵 ∧ 𝜓 ) → ( 𝜑 → 𝑧 = 𝐴 ) ) ↔ ( ∃ 𝑦 ( 𝑧 = 𝐵 ∧ 𝜓 ) → ∀ 𝑥 ( 𝜑 → 𝑧 = 𝐴 ) ) ) | |
| 27 | 25 26 | bitri | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑧 = 𝐵 ∧ 𝜓 ) → ( 𝜑 → 𝑧 = 𝐴 ) ) ↔ ( ∃ 𝑦 ( 𝑧 = 𝐵 ∧ 𝜓 ) → ∀ 𝑥 ( 𝜑 → 𝑧 = 𝐴 ) ) ) |
| 28 | 23 27 | sylib | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 ∧ 𝜓 ) → 𝐴 = 𝐵 ) → ( ∃ 𝑦 ( 𝑧 = 𝐵 ∧ 𝜓 ) → ∀ 𝑥 ( 𝜑 → 𝑧 = 𝐴 ) ) ) |
| 29 | 28 | eximdv | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 ∧ 𝜓 ) → 𝐴 = 𝐵 ) → ( ∃ 𝑧 ∃ 𝑦 ( 𝑧 = 𝐵 ∧ 𝜓 ) → ∃ 𝑧 ∀ 𝑥 ( 𝜑 → 𝑧 = 𝐴 ) ) ) |
| 30 | 11 29 | biimtrid | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 ∧ 𝜓 ) → 𝐴 = 𝐵 ) → ( ∃ 𝑥 𝜑 → ∃ 𝑧 ∀ 𝑥 ( 𝜑 → 𝑧 = 𝐴 ) ) ) |
| 31 | 30 | imp | ⊢ ( ( ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 ∧ 𝜓 ) → 𝐴 = 𝐵 ) ∧ ∃ 𝑥 𝜑 ) → ∃ 𝑧 ∀ 𝑥 ( 𝜑 → 𝑧 = 𝐴 ) ) |
| 32 | pm4.24 | ⊢ ( 𝜑 ↔ ( 𝜑 ∧ 𝜑 ) ) | |
| 33 | 32 | biimpi | ⊢ ( 𝜑 → ( 𝜑 ∧ 𝜑 ) ) |
| 34 | anim12 | ⊢ ( ( ( 𝜑 → 𝑧 = 𝐴 ) ∧ ( 𝜑 → 𝑤 = 𝐴 ) ) → ( ( 𝜑 ∧ 𝜑 ) → ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐴 ) ) ) | |
| 35 | eqtr3 | ⊢ ( ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐴 ) → 𝑧 = 𝑤 ) | |
| 36 | 33 34 35 | syl56 | ⊢ ( ( ( 𝜑 → 𝑧 = 𝐴 ) ∧ ( 𝜑 → 𝑤 = 𝐴 ) ) → ( 𝜑 → 𝑧 = 𝑤 ) ) |
| 37 | 36 | alanimi | ⊢ ( ( ∀ 𝑥 ( 𝜑 → 𝑧 = 𝐴 ) ∧ ∀ 𝑥 ( 𝜑 → 𝑤 = 𝐴 ) ) → ∀ 𝑥 ( 𝜑 → 𝑧 = 𝑤 ) ) |
| 38 | 19.23v | ⊢ ( ∀ 𝑥 ( 𝜑 → 𝑧 = 𝑤 ) ↔ ( ∃ 𝑥 𝜑 → 𝑧 = 𝑤 ) ) | |
| 39 | 37 38 | sylib | ⊢ ( ( ∀ 𝑥 ( 𝜑 → 𝑧 = 𝐴 ) ∧ ∀ 𝑥 ( 𝜑 → 𝑤 = 𝐴 ) ) → ( ∃ 𝑥 𝜑 → 𝑧 = 𝑤 ) ) |
| 40 | 39 | com12 | ⊢ ( ∃ 𝑥 𝜑 → ( ( ∀ 𝑥 ( 𝜑 → 𝑧 = 𝐴 ) ∧ ∀ 𝑥 ( 𝜑 → 𝑤 = 𝐴 ) ) → 𝑧 = 𝑤 ) ) |
| 41 | 40 | alrimivv | ⊢ ( ∃ 𝑥 𝜑 → ∀ 𝑧 ∀ 𝑤 ( ( ∀ 𝑥 ( 𝜑 → 𝑧 = 𝐴 ) ∧ ∀ 𝑥 ( 𝜑 → 𝑤 = 𝐴 ) ) → 𝑧 = 𝑤 ) ) |
| 42 | 41 | adantl | ⊢ ( ( ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 ∧ 𝜓 ) → 𝐴 = 𝐵 ) ∧ ∃ 𝑥 𝜑 ) → ∀ 𝑧 ∀ 𝑤 ( ( ∀ 𝑥 ( 𝜑 → 𝑧 = 𝐴 ) ∧ ∀ 𝑥 ( 𝜑 → 𝑤 = 𝐴 ) ) → 𝑧 = 𝑤 ) ) |
| 43 | eqeq1 | ⊢ ( 𝑧 = 𝑤 → ( 𝑧 = 𝐴 ↔ 𝑤 = 𝐴 ) ) | |
| 44 | 43 | imbi2d | ⊢ ( 𝑧 = 𝑤 → ( ( 𝜑 → 𝑧 = 𝐴 ) ↔ ( 𝜑 → 𝑤 = 𝐴 ) ) ) |
| 45 | 44 | albidv | ⊢ ( 𝑧 = 𝑤 → ( ∀ 𝑥 ( 𝜑 → 𝑧 = 𝐴 ) ↔ ∀ 𝑥 ( 𝜑 → 𝑤 = 𝐴 ) ) ) |
| 46 | 45 | eu4 | ⊢ ( ∃! 𝑧 ∀ 𝑥 ( 𝜑 → 𝑧 = 𝐴 ) ↔ ( ∃ 𝑧 ∀ 𝑥 ( 𝜑 → 𝑧 = 𝐴 ) ∧ ∀ 𝑧 ∀ 𝑤 ( ( ∀ 𝑥 ( 𝜑 → 𝑧 = 𝐴 ) ∧ ∀ 𝑥 ( 𝜑 → 𝑤 = 𝐴 ) ) → 𝑧 = 𝑤 ) ) ) |
| 47 | 31 42 46 | sylanbrc | ⊢ ( ( ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 ∧ 𝜓 ) → 𝐴 = 𝐵 ) ∧ ∃ 𝑥 𝜑 ) → ∃! 𝑧 ∀ 𝑥 ( 𝜑 → 𝑧 = 𝐴 ) ) |