This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existential uniqueness via an indirect equality. (Contributed by NM, 11-Oct-2010)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | euind.1 | |- B e. _V |
|
| euind.2 | |- ( x = y -> ( ph <-> ps ) ) |
||
| Assertion | euind | |- ( ( A. x A. y ( ( ph /\ ps ) -> A = B ) /\ E. x ph ) -> E! z A. x ( ph -> z = A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euind.1 | |- B e. _V |
|
| 2 | euind.2 | |- ( x = y -> ( ph <-> ps ) ) |
|
| 3 | 2 | cbvexvw | |- ( E. x ph <-> E. y ps ) |
| 4 | 1 | isseti | |- E. z z = B |
| 5 | 4 | biantrur | |- ( ps <-> ( E. z z = B /\ ps ) ) |
| 6 | 5 | exbii | |- ( E. y ps <-> E. y ( E. z z = B /\ ps ) ) |
| 7 | 19.41v | |- ( E. z ( z = B /\ ps ) <-> ( E. z z = B /\ ps ) ) |
|
| 8 | 7 | exbii | |- ( E. y E. z ( z = B /\ ps ) <-> E. y ( E. z z = B /\ ps ) ) |
| 9 | excom | |- ( E. y E. z ( z = B /\ ps ) <-> E. z E. y ( z = B /\ ps ) ) |
|
| 10 | 6 8 9 | 3bitr2i | |- ( E. y ps <-> E. z E. y ( z = B /\ ps ) ) |
| 11 | 3 10 | bitri | |- ( E. x ph <-> E. z E. y ( z = B /\ ps ) ) |
| 12 | eqeq2 | |- ( A = B -> ( z = A <-> z = B ) ) |
|
| 13 | 12 | imim2i | |- ( ( ( ph /\ ps ) -> A = B ) -> ( ( ph /\ ps ) -> ( z = A <-> z = B ) ) ) |
| 14 | biimpr | |- ( ( z = A <-> z = B ) -> ( z = B -> z = A ) ) |
|
| 15 | 14 | imim2i | |- ( ( ( ph /\ ps ) -> ( z = A <-> z = B ) ) -> ( ( ph /\ ps ) -> ( z = B -> z = A ) ) ) |
| 16 | an31 | |- ( ( ( ph /\ ps ) /\ z = B ) <-> ( ( z = B /\ ps ) /\ ph ) ) |
|
| 17 | 16 | imbi1i | |- ( ( ( ( ph /\ ps ) /\ z = B ) -> z = A ) <-> ( ( ( z = B /\ ps ) /\ ph ) -> z = A ) ) |
| 18 | impexp | |- ( ( ( ( ph /\ ps ) /\ z = B ) -> z = A ) <-> ( ( ph /\ ps ) -> ( z = B -> z = A ) ) ) |
|
| 19 | impexp | |- ( ( ( ( z = B /\ ps ) /\ ph ) -> z = A ) <-> ( ( z = B /\ ps ) -> ( ph -> z = A ) ) ) |
|
| 20 | 17 18 19 | 3bitr3i | |- ( ( ( ph /\ ps ) -> ( z = B -> z = A ) ) <-> ( ( z = B /\ ps ) -> ( ph -> z = A ) ) ) |
| 21 | 15 20 | sylib | |- ( ( ( ph /\ ps ) -> ( z = A <-> z = B ) ) -> ( ( z = B /\ ps ) -> ( ph -> z = A ) ) ) |
| 22 | 13 21 | syl | |- ( ( ( ph /\ ps ) -> A = B ) -> ( ( z = B /\ ps ) -> ( ph -> z = A ) ) ) |
| 23 | 22 | 2alimi | |- ( A. x A. y ( ( ph /\ ps ) -> A = B ) -> A. x A. y ( ( z = B /\ ps ) -> ( ph -> z = A ) ) ) |
| 24 | 19.23v | |- ( A. y ( ( z = B /\ ps ) -> ( ph -> z = A ) ) <-> ( E. y ( z = B /\ ps ) -> ( ph -> z = A ) ) ) |
|
| 25 | 24 | albii | |- ( A. x A. y ( ( z = B /\ ps ) -> ( ph -> z = A ) ) <-> A. x ( E. y ( z = B /\ ps ) -> ( ph -> z = A ) ) ) |
| 26 | 19.21v | |- ( A. x ( E. y ( z = B /\ ps ) -> ( ph -> z = A ) ) <-> ( E. y ( z = B /\ ps ) -> A. x ( ph -> z = A ) ) ) |
|
| 27 | 25 26 | bitri | |- ( A. x A. y ( ( z = B /\ ps ) -> ( ph -> z = A ) ) <-> ( E. y ( z = B /\ ps ) -> A. x ( ph -> z = A ) ) ) |
| 28 | 23 27 | sylib | |- ( A. x A. y ( ( ph /\ ps ) -> A = B ) -> ( E. y ( z = B /\ ps ) -> A. x ( ph -> z = A ) ) ) |
| 29 | 28 | eximdv | |- ( A. x A. y ( ( ph /\ ps ) -> A = B ) -> ( E. z E. y ( z = B /\ ps ) -> E. z A. x ( ph -> z = A ) ) ) |
| 30 | 11 29 | biimtrid | |- ( A. x A. y ( ( ph /\ ps ) -> A = B ) -> ( E. x ph -> E. z A. x ( ph -> z = A ) ) ) |
| 31 | 30 | imp | |- ( ( A. x A. y ( ( ph /\ ps ) -> A = B ) /\ E. x ph ) -> E. z A. x ( ph -> z = A ) ) |
| 32 | pm4.24 | |- ( ph <-> ( ph /\ ph ) ) |
|
| 33 | 32 | biimpi | |- ( ph -> ( ph /\ ph ) ) |
| 34 | anim12 | |- ( ( ( ph -> z = A ) /\ ( ph -> w = A ) ) -> ( ( ph /\ ph ) -> ( z = A /\ w = A ) ) ) |
|
| 35 | eqtr3 | |- ( ( z = A /\ w = A ) -> z = w ) |
|
| 36 | 33 34 35 | syl56 | |- ( ( ( ph -> z = A ) /\ ( ph -> w = A ) ) -> ( ph -> z = w ) ) |
| 37 | 36 | alanimi | |- ( ( A. x ( ph -> z = A ) /\ A. x ( ph -> w = A ) ) -> A. x ( ph -> z = w ) ) |
| 38 | 19.23v | |- ( A. x ( ph -> z = w ) <-> ( E. x ph -> z = w ) ) |
|
| 39 | 37 38 | sylib | |- ( ( A. x ( ph -> z = A ) /\ A. x ( ph -> w = A ) ) -> ( E. x ph -> z = w ) ) |
| 40 | 39 | com12 | |- ( E. x ph -> ( ( A. x ( ph -> z = A ) /\ A. x ( ph -> w = A ) ) -> z = w ) ) |
| 41 | 40 | alrimivv | |- ( E. x ph -> A. z A. w ( ( A. x ( ph -> z = A ) /\ A. x ( ph -> w = A ) ) -> z = w ) ) |
| 42 | 41 | adantl | |- ( ( A. x A. y ( ( ph /\ ps ) -> A = B ) /\ E. x ph ) -> A. z A. w ( ( A. x ( ph -> z = A ) /\ A. x ( ph -> w = A ) ) -> z = w ) ) |
| 43 | eqeq1 | |- ( z = w -> ( z = A <-> w = A ) ) |
|
| 44 | 43 | imbi2d | |- ( z = w -> ( ( ph -> z = A ) <-> ( ph -> w = A ) ) ) |
| 45 | 44 | albidv | |- ( z = w -> ( A. x ( ph -> z = A ) <-> A. x ( ph -> w = A ) ) ) |
| 46 | 45 | eu4 | |- ( E! z A. x ( ph -> z = A ) <-> ( E. z A. x ( ph -> z = A ) /\ A. z A. w ( ( A. x ( ph -> z = A ) /\ A. x ( ph -> w = A ) ) -> z = w ) ) ) |
| 47 | 31 42 46 | sylanbrc | |- ( ( A. x A. y ( ( ph /\ ps ) -> A = B ) /\ E. x ph ) -> E! z A. x ( ph -> z = A ) ) |