This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sufficient condition for an element to be equal to the infimum. (Contributed by AV, 2-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | infexd.1 | ⊢ ( 𝜑 → 𝑅 Or 𝐴 ) | |
| Assertion | eqinf | ⊢ ( 𝜑 → ( ( 𝐶 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝐶 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐶 𝑅 𝑦 → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝑦 ) ) → inf ( 𝐵 , 𝐴 , 𝑅 ) = 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infexd.1 | ⊢ ( 𝜑 → 𝑅 Or 𝐴 ) | |
| 2 | df-inf | ⊢ inf ( 𝐵 , 𝐴 , 𝑅 ) = sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) | |
| 3 | cnvso | ⊢ ( 𝑅 Or 𝐴 ↔ ◡ 𝑅 Or 𝐴 ) | |
| 4 | 1 3 | sylib | ⊢ ( 𝜑 → ◡ 𝑅 Or 𝐴 ) |
| 5 | 4 | eqsup | ⊢ ( 𝜑 → ( ( 𝐶 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝐶 ◡ 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 ◡ 𝑅 𝐶 → ∃ 𝑧 ∈ 𝐵 𝑦 ◡ 𝑅 𝑧 ) ) → sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) = 𝐶 ) ) |
| 6 | brcnvg | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝑦 ∈ V ) → ( 𝐶 ◡ 𝑅 𝑦 ↔ 𝑦 𝑅 𝐶 ) ) | |
| 7 | 6 | bicomd | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝑦 ∈ V ) → ( 𝑦 𝑅 𝐶 ↔ 𝐶 ◡ 𝑅 𝑦 ) ) |
| 8 | 7 | elvd | ⊢ ( 𝐶 ∈ 𝐴 → ( 𝑦 𝑅 𝐶 ↔ 𝐶 ◡ 𝑅 𝑦 ) ) |
| 9 | 8 | notbid | ⊢ ( 𝐶 ∈ 𝐴 → ( ¬ 𝑦 𝑅 𝐶 ↔ ¬ 𝐶 ◡ 𝑅 𝑦 ) ) |
| 10 | 9 | ralbidv | ⊢ ( 𝐶 ∈ 𝐴 → ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝐶 ↔ ∀ 𝑦 ∈ 𝐵 ¬ 𝐶 ◡ 𝑅 𝑦 ) ) |
| 11 | vex | ⊢ 𝑦 ∈ V | |
| 12 | brcnvg | ⊢ ( ( 𝑦 ∈ V ∧ 𝐶 ∈ 𝐴 ) → ( 𝑦 ◡ 𝑅 𝐶 ↔ 𝐶 𝑅 𝑦 ) ) | |
| 13 | 11 12 | mpan | ⊢ ( 𝐶 ∈ 𝐴 → ( 𝑦 ◡ 𝑅 𝐶 ↔ 𝐶 𝑅 𝑦 ) ) |
| 14 | 13 | bicomd | ⊢ ( 𝐶 ∈ 𝐴 → ( 𝐶 𝑅 𝑦 ↔ 𝑦 ◡ 𝑅 𝐶 ) ) |
| 15 | vex | ⊢ 𝑧 ∈ V | |
| 16 | 11 15 | brcnv | ⊢ ( 𝑦 ◡ 𝑅 𝑧 ↔ 𝑧 𝑅 𝑦 ) |
| 17 | 16 | a1i | ⊢ ( 𝐶 ∈ 𝐴 → ( 𝑦 ◡ 𝑅 𝑧 ↔ 𝑧 𝑅 𝑦 ) ) |
| 18 | 17 | bicomd | ⊢ ( 𝐶 ∈ 𝐴 → ( 𝑧 𝑅 𝑦 ↔ 𝑦 ◡ 𝑅 𝑧 ) ) |
| 19 | 18 | rexbidv | ⊢ ( 𝐶 ∈ 𝐴 → ( ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝑦 ↔ ∃ 𝑧 ∈ 𝐵 𝑦 ◡ 𝑅 𝑧 ) ) |
| 20 | 14 19 | imbi12d | ⊢ ( 𝐶 ∈ 𝐴 → ( ( 𝐶 𝑅 𝑦 → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝑦 ) ↔ ( 𝑦 ◡ 𝑅 𝐶 → ∃ 𝑧 ∈ 𝐵 𝑦 ◡ 𝑅 𝑧 ) ) ) |
| 21 | 20 | ralbidv | ⊢ ( 𝐶 ∈ 𝐴 → ( ∀ 𝑦 ∈ 𝐴 ( 𝐶 𝑅 𝑦 → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝑦 ) ↔ ∀ 𝑦 ∈ 𝐴 ( 𝑦 ◡ 𝑅 𝐶 → ∃ 𝑧 ∈ 𝐵 𝑦 ◡ 𝑅 𝑧 ) ) ) |
| 22 | 10 21 | anbi12d | ⊢ ( 𝐶 ∈ 𝐴 → ( ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝐶 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐶 𝑅 𝑦 → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝑦 ) ) ↔ ( ∀ 𝑦 ∈ 𝐵 ¬ 𝐶 ◡ 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 ◡ 𝑅 𝐶 → ∃ 𝑧 ∈ 𝐵 𝑦 ◡ 𝑅 𝑧 ) ) ) ) |
| 23 | 22 | pm5.32i | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝐶 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐶 𝑅 𝑦 → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝑦 ) ) ) ↔ ( 𝐶 ∈ 𝐴 ∧ ( ∀ 𝑦 ∈ 𝐵 ¬ 𝐶 ◡ 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 ◡ 𝑅 𝐶 → ∃ 𝑧 ∈ 𝐵 𝑦 ◡ 𝑅 𝑧 ) ) ) ) |
| 24 | 3anass | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝐶 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐶 𝑅 𝑦 → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝑦 ) ) ↔ ( 𝐶 ∈ 𝐴 ∧ ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝐶 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐶 𝑅 𝑦 → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝑦 ) ) ) ) | |
| 25 | 3anass | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝐶 ◡ 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 ◡ 𝑅 𝐶 → ∃ 𝑧 ∈ 𝐵 𝑦 ◡ 𝑅 𝑧 ) ) ↔ ( 𝐶 ∈ 𝐴 ∧ ( ∀ 𝑦 ∈ 𝐵 ¬ 𝐶 ◡ 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 ◡ 𝑅 𝐶 → ∃ 𝑧 ∈ 𝐵 𝑦 ◡ 𝑅 𝑧 ) ) ) ) | |
| 26 | 23 24 25 | 3bitr4i | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝐶 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐶 𝑅 𝑦 → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝑦 ) ) ↔ ( 𝐶 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝐶 ◡ 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 ◡ 𝑅 𝐶 → ∃ 𝑧 ∈ 𝐵 𝑦 ◡ 𝑅 𝑧 ) ) ) |
| 27 | 26 | biimpi | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝐶 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐶 𝑅 𝑦 → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝑦 ) ) → ( 𝐶 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝐶 ◡ 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 ◡ 𝑅 𝐶 → ∃ 𝑧 ∈ 𝐵 𝑦 ◡ 𝑅 𝑧 ) ) ) |
| 28 | 5 27 | impel | ⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝐶 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐶 𝑅 𝑦 → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝑦 ) ) ) → sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) = 𝐶 ) |
| 29 | 2 28 | eqtrid | ⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝐶 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐶 𝑅 𝑦 → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝑦 ) ) ) → inf ( 𝐵 , 𝐴 , 𝑅 ) = 𝐶 ) |
| 30 | 29 | ex | ⊢ ( 𝜑 → ( ( 𝐶 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝐶 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝐶 𝑅 𝑦 → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝑦 ) ) → inf ( 𝐵 , 𝐴 , 𝑅 ) = 𝐶 ) ) |