This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sufficient condition for an element to be equal to the supremum. (Contributed by Mario Carneiro, 21-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | supmo.1 | ⊢ ( 𝜑 → 𝑅 Or 𝐴 ) | |
| Assertion | eqsup | ⊢ ( 𝜑 → ( ( 𝐶 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝐶 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝐶 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) → sup ( 𝐵 , 𝐴 , 𝑅 ) = 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supmo.1 | ⊢ ( 𝜑 → 𝑅 Or 𝐴 ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝐶 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝐶 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) ) → 𝑅 Or 𝐴 ) |
| 3 | 2 | supval2 | ⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝐶 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝐶 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) ) → sup ( 𝐵 , 𝐴 , 𝑅 ) = ( ℩ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) ) ) |
| 4 | 3simpc | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝐶 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝐶 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) → ( ∀ 𝑦 ∈ 𝐵 ¬ 𝐶 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝐶 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) ) | |
| 5 | 4 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝐶 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝐶 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) ) → ( ∀ 𝑦 ∈ 𝐵 ¬ 𝐶 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝐶 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) ) |
| 6 | simpr1 | ⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝐶 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝐶 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) ) → 𝐶 ∈ 𝐴 ) | |
| 7 | breq1 | ⊢ ( 𝑥 = 𝐶 → ( 𝑥 𝑅 𝑦 ↔ 𝐶 𝑅 𝑦 ) ) | |
| 8 | 7 | notbid | ⊢ ( 𝑥 = 𝐶 → ( ¬ 𝑥 𝑅 𝑦 ↔ ¬ 𝐶 𝑅 𝑦 ) ) |
| 9 | 8 | ralbidv | ⊢ ( 𝑥 = 𝐶 → ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ↔ ∀ 𝑦 ∈ 𝐵 ¬ 𝐶 𝑅 𝑦 ) ) |
| 10 | breq2 | ⊢ ( 𝑥 = 𝐶 → ( 𝑦 𝑅 𝑥 ↔ 𝑦 𝑅 𝐶 ) ) | |
| 11 | 10 | imbi1d | ⊢ ( 𝑥 = 𝐶 → ( ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ↔ ( 𝑦 𝑅 𝐶 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) ) |
| 12 | 11 | ralbidv | ⊢ ( 𝑥 = 𝐶 → ( ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ↔ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝐶 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) ) |
| 13 | 9 12 | anbi12d | ⊢ ( 𝑥 = 𝐶 → ( ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) ↔ ( ∀ 𝑦 ∈ 𝐵 ¬ 𝐶 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝐶 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) ) ) |
| 14 | 13 | rspcev | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ ( ∀ 𝑦 ∈ 𝐵 ¬ 𝐶 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝐶 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) ) → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) ) |
| 15 | 6 5 14 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝐶 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝐶 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) ) → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) ) |
| 16 | 2 15 | supeu | ⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝐶 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝐶 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) ) → ∃! 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) ) |
| 17 | 13 | riota2 | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ ∃! 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) ) → ( ( ∀ 𝑦 ∈ 𝐵 ¬ 𝐶 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝐶 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) ↔ ( ℩ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) ) = 𝐶 ) ) |
| 18 | 6 16 17 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝐶 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝐶 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) ) → ( ( ∀ 𝑦 ∈ 𝐵 ¬ 𝐶 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝐶 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) ↔ ( ℩ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) ) = 𝐶 ) ) |
| 19 | 5 18 | mpbid | ⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝐶 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝐶 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) ) → ( ℩ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) ) = 𝐶 ) |
| 20 | 3 19 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝐶 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝐶 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) ) → sup ( 𝐵 , 𝐴 , 𝑅 ) = 𝐶 ) |
| 21 | 20 | ex | ⊢ ( 𝜑 → ( ( 𝐶 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐵 ¬ 𝐶 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝐶 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) → sup ( 𝐵 , 𝐴 , 𝑅 ) = 𝐶 ) ) |