This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Each coset is equipotent to the subgroup itself (which is also the coset containing the identity). (Contributed by Mario Carneiro, 20-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqger.x | |- X = ( Base ` G ) |
|
| eqger.r | |- .~ = ( G ~QG Y ) |
||
| Assertion | eqgen | |- ( ( Y e. ( SubGrp ` G ) /\ A e. ( X /. .~ ) ) -> Y ~~ A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqger.x | |- X = ( Base ` G ) |
|
| 2 | eqger.r | |- .~ = ( G ~QG Y ) |
|
| 3 | eqid | |- ( X /. .~ ) = ( X /. .~ ) |
|
| 4 | breq2 | |- ( [ x ] .~ = A -> ( Y ~~ [ x ] .~ <-> Y ~~ A ) ) |
|
| 5 | simpl | |- ( ( Y e. ( SubGrp ` G ) /\ x e. X ) -> Y e. ( SubGrp ` G ) ) |
|
| 6 | subgrcl | |- ( Y e. ( SubGrp ` G ) -> G e. Grp ) |
|
| 7 | 1 | subgss | |- ( Y e. ( SubGrp ` G ) -> Y C_ X ) |
| 8 | 6 7 | jca | |- ( Y e. ( SubGrp ` G ) -> ( G e. Grp /\ Y C_ X ) ) |
| 9 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 10 | 1 2 9 | eqglact | |- ( ( G e. Grp /\ Y C_ X /\ x e. X ) -> [ x ] .~ = ( ( z e. X |-> ( x ( +g ` G ) z ) ) " Y ) ) |
| 11 | 10 | 3expa | |- ( ( ( G e. Grp /\ Y C_ X ) /\ x e. X ) -> [ x ] .~ = ( ( z e. X |-> ( x ( +g ` G ) z ) ) " Y ) ) |
| 12 | 8 11 | sylan | |- ( ( Y e. ( SubGrp ` G ) /\ x e. X ) -> [ x ] .~ = ( ( z e. X |-> ( x ( +g ` G ) z ) ) " Y ) ) |
| 13 | 2 | ovexi | |- .~ e. _V |
| 14 | ecexg | |- ( .~ e. _V -> [ x ] .~ e. _V ) |
|
| 15 | 13 14 | ax-mp | |- [ x ] .~ e. _V |
| 16 | 12 15 | eqeltrrdi | |- ( ( Y e. ( SubGrp ` G ) /\ x e. X ) -> ( ( z e. X |-> ( x ( +g ` G ) z ) ) " Y ) e. _V ) |
| 17 | eqid | |- ( y e. X |-> ( z e. X |-> ( y ( +g ` G ) z ) ) ) = ( y e. X |-> ( z e. X |-> ( y ( +g ` G ) z ) ) ) |
|
| 18 | 17 1 9 | grplactf1o | |- ( ( G e. Grp /\ x e. X ) -> ( ( y e. X |-> ( z e. X |-> ( y ( +g ` G ) z ) ) ) ` x ) : X -1-1-onto-> X ) |
| 19 | 17 1 | grplactfval | |- ( x e. X -> ( ( y e. X |-> ( z e. X |-> ( y ( +g ` G ) z ) ) ) ` x ) = ( z e. X |-> ( x ( +g ` G ) z ) ) ) |
| 20 | 19 | adantl | |- ( ( G e. Grp /\ x e. X ) -> ( ( y e. X |-> ( z e. X |-> ( y ( +g ` G ) z ) ) ) ` x ) = ( z e. X |-> ( x ( +g ` G ) z ) ) ) |
| 21 | 20 | f1oeq1d | |- ( ( G e. Grp /\ x e. X ) -> ( ( ( y e. X |-> ( z e. X |-> ( y ( +g ` G ) z ) ) ) ` x ) : X -1-1-onto-> X <-> ( z e. X |-> ( x ( +g ` G ) z ) ) : X -1-1-onto-> X ) ) |
| 22 | 18 21 | mpbid | |- ( ( G e. Grp /\ x e. X ) -> ( z e. X |-> ( x ( +g ` G ) z ) ) : X -1-1-onto-> X ) |
| 23 | 6 22 | sylan | |- ( ( Y e. ( SubGrp ` G ) /\ x e. X ) -> ( z e. X |-> ( x ( +g ` G ) z ) ) : X -1-1-onto-> X ) |
| 24 | f1of1 | |- ( ( z e. X |-> ( x ( +g ` G ) z ) ) : X -1-1-onto-> X -> ( z e. X |-> ( x ( +g ` G ) z ) ) : X -1-1-> X ) |
|
| 25 | 23 24 | syl | |- ( ( Y e. ( SubGrp ` G ) /\ x e. X ) -> ( z e. X |-> ( x ( +g ` G ) z ) ) : X -1-1-> X ) |
| 26 | 7 | adantr | |- ( ( Y e. ( SubGrp ` G ) /\ x e. X ) -> Y C_ X ) |
| 27 | f1ores | |- ( ( ( z e. X |-> ( x ( +g ` G ) z ) ) : X -1-1-> X /\ Y C_ X ) -> ( ( z e. X |-> ( x ( +g ` G ) z ) ) |` Y ) : Y -1-1-onto-> ( ( z e. X |-> ( x ( +g ` G ) z ) ) " Y ) ) |
|
| 28 | 25 26 27 | syl2anc | |- ( ( Y e. ( SubGrp ` G ) /\ x e. X ) -> ( ( z e. X |-> ( x ( +g ` G ) z ) ) |` Y ) : Y -1-1-onto-> ( ( z e. X |-> ( x ( +g ` G ) z ) ) " Y ) ) |
| 29 | f1oen2g | |- ( ( Y e. ( SubGrp ` G ) /\ ( ( z e. X |-> ( x ( +g ` G ) z ) ) " Y ) e. _V /\ ( ( z e. X |-> ( x ( +g ` G ) z ) ) |` Y ) : Y -1-1-onto-> ( ( z e. X |-> ( x ( +g ` G ) z ) ) " Y ) ) -> Y ~~ ( ( z e. X |-> ( x ( +g ` G ) z ) ) " Y ) ) |
|
| 30 | 5 16 28 29 | syl3anc | |- ( ( Y e. ( SubGrp ` G ) /\ x e. X ) -> Y ~~ ( ( z e. X |-> ( x ( +g ` G ) z ) ) " Y ) ) |
| 31 | 30 12 | breqtrrd | |- ( ( Y e. ( SubGrp ` G ) /\ x e. X ) -> Y ~~ [ x ] .~ ) |
| 32 | 3 4 31 | ectocld | |- ( ( Y e. ( SubGrp ` G ) /\ A e. ( X /. .~ ) ) -> Y ~~ A ) |