This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The equivalence classes modulo the coset equivalence relation for the trivial (zero) subgroup of a group are singletons. (Contributed by AV, 26-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqg0subg.0 | ||
| eqg0subg.s | |||
| eqg0subg.b | |||
| eqg0subg.r | |||
| Assertion | eqg0subgecsn |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqg0subg.0 | ||
| 2 | eqg0subg.s | ||
| 3 | eqg0subg.b | ||
| 4 | eqg0subg.r | ||
| 5 | df-ec | ||
| 6 | 1 2 3 4 | eqg0subg | |
| 7 | 6 | adantr | |
| 8 | 7 | imaeq1d | |
| 9 | snssi | ||
| 10 | 9 | adantl | |
| 11 | resima2 | ||
| 12 | 10 11 | syl | |
| 13 | imai | ||
| 14 | 12 13 | eqtrdi | |
| 15 | 8 14 | eqtrd | |
| 16 | 5 15 | eqtrid |