This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A simplification of class abstraction. Theorem 5.2 of Quine p. 35. (Contributed by NM, 5-Sep-2011) (Revised by Mario Carneiro, 7-Oct-2016) (Proof shortened by Wolf Lammen, 26-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | abid2f.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| Assertion | abid2f | ⊢ { 𝑥 ∣ 𝑥 ∈ 𝐴 } = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abid2f.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| 2 | 1 | eqabf | ⊢ ( 𝐴 = { 𝑥 ∣ 𝑥 ∈ 𝐴 } ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴 ) ) |
| 3 | biid | ⊢ ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴 ) | |
| 4 | 2 3 | mpgbir | ⊢ 𝐴 = { 𝑥 ∣ 𝑥 ∈ 𝐴 } |
| 5 | 4 | eqcomi | ⊢ { 𝑥 ∣ 𝑥 ∈ 𝐴 } = 𝐴 |