This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality of a class variable and a class abstraction. In this version, the fact that x is a nonfree variable in A is explicitly stated as a hypothesis. (Contributed by Thierry Arnoux, 11-May-2017) Avoid ax-13 . (Revised by Wolf Lammen, 13-May-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eqabf.0 | |- F/_ x A |
|
| Assertion | eqabf | |- ( A = { x | ph } <-> A. x ( x e. A <-> ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqabf.0 | |- F/_ x A |
|
| 2 | nfab1 | |- F/_ x { x | ph } |
|
| 3 | 1 2 | cleqf | |- ( A = { x | ph } <-> A. x ( x e. A <-> x e. { x | ph } ) ) |
| 4 | abid | |- ( x e. { x | ph } <-> ph ) |
|
| 5 | 4 | bibi2i | |- ( ( x e. A <-> x e. { x | ph } ) <-> ( x e. A <-> ph ) ) |
| 6 | 5 | albii | |- ( A. x ( x e. A <-> x e. { x | ph } ) <-> A. x ( x e. A <-> ph ) ) |
| 7 | 3 6 | bitri | |- ( A = { x | ph } <-> A. x ( x e. A <-> ph ) ) |