This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function /Q acts as a substitute for equivalence classes, and it satisfies the fundamental requirement for equivalence representatives: the representatives are equal iff the members are equivalent. (Contributed by Mario Carneiro, 6-May-2013) (Revised by Mario Carneiro, 12-Aug-2015) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nqereq | ⊢ ( ( 𝐴 ∈ ( N × N ) ∧ 𝐵 ∈ ( N × N ) ) → ( 𝐴 ~Q 𝐵 ↔ ( [Q] ‘ 𝐴 ) = ( [Q] ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nqercl | ⊢ ( 𝐴 ∈ ( N × N ) → ( [Q] ‘ 𝐴 ) ∈ Q ) | |
| 2 | 1 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ( N × N ) ∧ 𝐵 ∈ ( N × N ) ∧ 𝐴 ~Q 𝐵 ) → ( [Q] ‘ 𝐴 ) ∈ Q ) |
| 3 | nqercl | ⊢ ( 𝐵 ∈ ( N × N ) → ( [Q] ‘ 𝐵 ) ∈ Q ) | |
| 4 | 3 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ( N × N ) ∧ 𝐵 ∈ ( N × N ) ∧ 𝐴 ~Q 𝐵 ) → ( [Q] ‘ 𝐵 ) ∈ Q ) |
| 5 | enqer | ⊢ ~Q Er ( N × N ) | |
| 6 | 5 | a1i | ⊢ ( ( 𝐴 ∈ ( N × N ) ∧ 𝐵 ∈ ( N × N ) ∧ 𝐴 ~Q 𝐵 ) → ~Q Er ( N × N ) ) |
| 7 | nqerrel | ⊢ ( 𝐴 ∈ ( N × N ) → 𝐴 ~Q ( [Q] ‘ 𝐴 ) ) | |
| 8 | 7 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ( N × N ) ∧ 𝐵 ∈ ( N × N ) ∧ 𝐴 ~Q 𝐵 ) → 𝐴 ~Q ( [Q] ‘ 𝐴 ) ) |
| 9 | simp3 | ⊢ ( ( 𝐴 ∈ ( N × N ) ∧ 𝐵 ∈ ( N × N ) ∧ 𝐴 ~Q 𝐵 ) → 𝐴 ~Q 𝐵 ) | |
| 10 | 6 8 9 | ertr3d | ⊢ ( ( 𝐴 ∈ ( N × N ) ∧ 𝐵 ∈ ( N × N ) ∧ 𝐴 ~Q 𝐵 ) → ( [Q] ‘ 𝐴 ) ~Q 𝐵 ) |
| 11 | nqerrel | ⊢ ( 𝐵 ∈ ( N × N ) → 𝐵 ~Q ( [Q] ‘ 𝐵 ) ) | |
| 12 | 11 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ( N × N ) ∧ 𝐵 ∈ ( N × N ) ∧ 𝐴 ~Q 𝐵 ) → 𝐵 ~Q ( [Q] ‘ 𝐵 ) ) |
| 13 | 6 10 12 | ertrd | ⊢ ( ( 𝐴 ∈ ( N × N ) ∧ 𝐵 ∈ ( N × N ) ∧ 𝐴 ~Q 𝐵 ) → ( [Q] ‘ 𝐴 ) ~Q ( [Q] ‘ 𝐵 ) ) |
| 14 | enqeq | ⊢ ( ( ( [Q] ‘ 𝐴 ) ∈ Q ∧ ( [Q] ‘ 𝐵 ) ∈ Q ∧ ( [Q] ‘ 𝐴 ) ~Q ( [Q] ‘ 𝐵 ) ) → ( [Q] ‘ 𝐴 ) = ( [Q] ‘ 𝐵 ) ) | |
| 15 | 2 4 13 14 | syl3anc | ⊢ ( ( 𝐴 ∈ ( N × N ) ∧ 𝐵 ∈ ( N × N ) ∧ 𝐴 ~Q 𝐵 ) → ( [Q] ‘ 𝐴 ) = ( [Q] ‘ 𝐵 ) ) |
| 16 | 15 | 3expia | ⊢ ( ( 𝐴 ∈ ( N × N ) ∧ 𝐵 ∈ ( N × N ) ) → ( 𝐴 ~Q 𝐵 → ( [Q] ‘ 𝐴 ) = ( [Q] ‘ 𝐵 ) ) ) |
| 17 | 5 | a1i | ⊢ ( ( 𝐴 ∈ ( N × N ) ∧ ( 𝐵 ∈ ( N × N ) ∧ ( [Q] ‘ 𝐴 ) = ( [Q] ‘ 𝐵 ) ) ) → ~Q Er ( N × N ) ) |
| 18 | 7 | adantr | ⊢ ( ( 𝐴 ∈ ( N × N ) ∧ ( 𝐵 ∈ ( N × N ) ∧ ( [Q] ‘ 𝐴 ) = ( [Q] ‘ 𝐵 ) ) ) → 𝐴 ~Q ( [Q] ‘ 𝐴 ) ) |
| 19 | simprr | ⊢ ( ( 𝐴 ∈ ( N × N ) ∧ ( 𝐵 ∈ ( N × N ) ∧ ( [Q] ‘ 𝐴 ) = ( [Q] ‘ 𝐵 ) ) ) → ( [Q] ‘ 𝐴 ) = ( [Q] ‘ 𝐵 ) ) | |
| 20 | 18 19 | breqtrd | ⊢ ( ( 𝐴 ∈ ( N × N ) ∧ ( 𝐵 ∈ ( N × N ) ∧ ( [Q] ‘ 𝐴 ) = ( [Q] ‘ 𝐵 ) ) ) → 𝐴 ~Q ( [Q] ‘ 𝐵 ) ) |
| 21 | 11 | ad2antrl | ⊢ ( ( 𝐴 ∈ ( N × N ) ∧ ( 𝐵 ∈ ( N × N ) ∧ ( [Q] ‘ 𝐴 ) = ( [Q] ‘ 𝐵 ) ) ) → 𝐵 ~Q ( [Q] ‘ 𝐵 ) ) |
| 22 | 17 20 21 | ertr4d | ⊢ ( ( 𝐴 ∈ ( N × N ) ∧ ( 𝐵 ∈ ( N × N ) ∧ ( [Q] ‘ 𝐴 ) = ( [Q] ‘ 𝐵 ) ) ) → 𝐴 ~Q 𝐵 ) |
| 23 | 22 | expr | ⊢ ( ( 𝐴 ∈ ( N × N ) ∧ 𝐵 ∈ ( N × N ) ) → ( ( [Q] ‘ 𝐴 ) = ( [Q] ‘ 𝐵 ) → 𝐴 ~Q 𝐵 ) ) |
| 24 | 16 23 | impbid | ⊢ ( ( 𝐴 ∈ ( N × N ) ∧ 𝐵 ∈ ( N × N ) ) → ( 𝐴 ~Q 𝐵 ↔ ( [Q] ‘ 𝐴 ) = ( [Q] ‘ 𝐵 ) ) ) |