This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Proof induction for en2 and related theorems. (Contributed by Mario Carneiro, 5-Jan-2016) Generalize to all ordinals and avoid ax-pow , ax-un . (Revised by BTernaryTau, 6-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | enp1i.1 | ⊢ Ord 𝑀 | |
| enp1i.2 | ⊢ 𝑁 = suc 𝑀 | ||
| enp1i.3 | ⊢ ( ( 𝐴 ∖ { 𝑥 } ) ≈ 𝑀 → 𝜑 ) | ||
| enp1i.4 | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝜓 ) ) | ||
| Assertion | enp1i | ⊢ ( 𝐴 ≈ 𝑁 → ∃ 𝑥 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enp1i.1 | ⊢ Ord 𝑀 | |
| 2 | enp1i.2 | ⊢ 𝑁 = suc 𝑀 | |
| 3 | enp1i.3 | ⊢ ( ( 𝐴 ∖ { 𝑥 } ) ≈ 𝑀 → 𝜑 ) | |
| 4 | enp1i.4 | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝜓 ) ) | |
| 5 | 2 | breq2i | ⊢ ( 𝐴 ≈ 𝑁 ↔ 𝐴 ≈ suc 𝑀 ) |
| 6 | encv | ⊢ ( 𝐴 ≈ suc 𝑀 → ( 𝐴 ∈ V ∧ suc 𝑀 ∈ V ) ) | |
| 7 | 6 | simprd | ⊢ ( 𝐴 ≈ suc 𝑀 → suc 𝑀 ∈ V ) |
| 8 | sssucid | ⊢ 𝑀 ⊆ suc 𝑀 | |
| 9 | ssexg | ⊢ ( ( 𝑀 ⊆ suc 𝑀 ∧ suc 𝑀 ∈ V ) → 𝑀 ∈ V ) | |
| 10 | 8 9 | mpan | ⊢ ( suc 𝑀 ∈ V → 𝑀 ∈ V ) |
| 11 | elong | ⊢ ( 𝑀 ∈ V → ( 𝑀 ∈ On ↔ Ord 𝑀 ) ) | |
| 12 | 7 10 11 | 3syl | ⊢ ( 𝐴 ≈ suc 𝑀 → ( 𝑀 ∈ On ↔ Ord 𝑀 ) ) |
| 13 | 1 12 | mpbiri | ⊢ ( 𝐴 ≈ suc 𝑀 → 𝑀 ∈ On ) |
| 14 | rexdif1en | ⊢ ( ( 𝑀 ∈ On ∧ 𝐴 ≈ suc 𝑀 ) → ∃ 𝑥 ∈ 𝐴 ( 𝐴 ∖ { 𝑥 } ) ≈ 𝑀 ) | |
| 15 | 13 14 | mpancom | ⊢ ( 𝐴 ≈ suc 𝑀 → ∃ 𝑥 ∈ 𝐴 ( 𝐴 ∖ { 𝑥 } ) ≈ 𝑀 ) |
| 16 | 3 | reximi | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝐴 ∖ { 𝑥 } ) ≈ 𝑀 → ∃ 𝑥 ∈ 𝐴 𝜑 ) |
| 17 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | |
| 18 | 4 | imp | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → 𝜓 ) |
| 19 | 18 | eximi | ⊢ ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ∃ 𝑥 𝜓 ) |
| 20 | 17 19 | sylbi | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 → ∃ 𝑥 𝜓 ) |
| 21 | 15 16 20 | 3syl | ⊢ ( 𝐴 ≈ suc 𝑀 → ∃ 𝑥 𝜓 ) |
| 22 | 5 21 | sylbi | ⊢ ( 𝐴 ≈ 𝑁 → ∃ 𝑥 𝜓 ) |