This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for uses of enp1i . (Contributed by Mario Carneiro, 5-Jan-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | enp1ilem.1 | |- T = ( { x } u. S ) |
|
| Assertion | enp1ilem | |- ( x e. A -> ( ( A \ { x } ) = S -> A = T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enp1ilem.1 | |- T = ( { x } u. S ) |
|
| 2 | uneq1 | |- ( ( A \ { x } ) = S -> ( ( A \ { x } ) u. { x } ) = ( S u. { x } ) ) |
|
| 3 | undif1 | |- ( ( A \ { x } ) u. { x } ) = ( A u. { x } ) |
|
| 4 | uncom | |- ( S u. { x } ) = ( { x } u. S ) |
|
| 5 | 4 1 | eqtr4i | |- ( S u. { x } ) = T |
| 6 | 2 3 5 | 3eqtr3g | |- ( ( A \ { x } ) = S -> ( A u. { x } ) = T ) |
| 7 | snssi | |- ( x e. A -> { x } C_ A ) |
|
| 8 | ssequn2 | |- ( { x } C_ A <-> ( A u. { x } ) = A ) |
|
| 9 | 7 8 | sylib | |- ( x e. A -> ( A u. { x } ) = A ) |
| 10 | 9 | eqeq1d | |- ( x e. A -> ( ( A u. { x } ) = T <-> A = T ) ) |
| 11 | 6 10 | imbitrid | |- ( x e. A -> ( ( A \ { x } ) = S -> A = T ) ) |