This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Virtual deduction proof of en3lplem2 . (Contributed by Alan Sare, 24-Oct-2011) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | en3lplem2VD | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) → ( 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } → ∃ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝑦 ∈ 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idn1 | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) ▶ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) ) | |
| 2 | idn3 | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) , 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } , 𝑥 = 𝐴 ▶ 𝑥 = 𝐴 ) | |
| 3 | en3lplem1VD | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) → ( 𝑥 = 𝐴 → ∃ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝑦 ∈ 𝑥 ) ) ) | |
| 4 | 1 2 3 | e13 | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) , 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } , 𝑥 = 𝐴 ▶ ∃ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝑦 ∈ 𝑥 ) ) |
| 5 | 4 | in3 | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) , 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } ▶ ( 𝑥 = 𝐴 → ∃ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝑦 ∈ 𝑥 ) ) ) |
| 6 | 3anrot | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) ↔ ( 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ∧ 𝐴 ∈ 𝐵 ) ) | |
| 7 | 1 6 | e1bi | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) ▶ ( 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ∧ 𝐴 ∈ 𝐵 ) ) |
| 8 | idn3 | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) , 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } , 𝑥 = 𝐵 ▶ 𝑥 = 𝐵 ) | |
| 9 | en3lplem1VD | ⊢ ( ( 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ∧ 𝐴 ∈ 𝐵 ) → ( 𝑥 = 𝐵 → ∃ 𝑦 ( 𝑦 ∈ { 𝐵 , 𝐶 , 𝐴 } ∧ 𝑦 ∈ 𝑥 ) ) ) | |
| 10 | 7 8 9 | e13 | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) , 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } , 𝑥 = 𝐵 ▶ ∃ 𝑦 ( 𝑦 ∈ { 𝐵 , 𝐶 , 𝐴 } ∧ 𝑦 ∈ 𝑥 ) ) |
| 11 | tprot | ⊢ { 𝐴 , 𝐵 , 𝐶 } = { 𝐵 , 𝐶 , 𝐴 } | |
| 12 | 11 | eleq2i | ⊢ ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ 𝑦 ∈ { 𝐵 , 𝐶 , 𝐴 } ) |
| 13 | 12 | anbi1i | ⊢ ( ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝑦 ∈ 𝑥 ) ↔ ( 𝑦 ∈ { 𝐵 , 𝐶 , 𝐴 } ∧ 𝑦 ∈ 𝑥 ) ) |
| 14 | 13 | exbii | ⊢ ( ∃ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝑦 ∈ 𝑥 ) ↔ ∃ 𝑦 ( 𝑦 ∈ { 𝐵 , 𝐶 , 𝐴 } ∧ 𝑦 ∈ 𝑥 ) ) |
| 15 | 10 14 | e3bir | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) , 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } , 𝑥 = 𝐵 ▶ ∃ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝑦 ∈ 𝑥 ) ) |
| 16 | 15 | in3 | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) , 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } ▶ ( 𝑥 = 𝐵 → ∃ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝑦 ∈ 𝑥 ) ) ) |
| 17 | jao | ⊢ ( ( 𝑥 = 𝐴 → ∃ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝑦 ∈ 𝑥 ) ) → ( ( 𝑥 = 𝐵 → ∃ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝑦 ∈ 𝑥 ) ) → ( ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → ∃ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝑦 ∈ 𝑥 ) ) ) ) | |
| 18 | 5 16 17 | e22 | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) , 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } ▶ ( ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → ∃ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝑦 ∈ 𝑥 ) ) ) |
| 19 | 3anrot | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ) ↔ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) ) | |
| 20 | 1 19 | e1bir | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) ▶ ( 𝐶 ∈ 𝐴 ∧ 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ) ) |
| 21 | idn3 | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) , 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } , 𝑥 = 𝐶 ▶ 𝑥 = 𝐶 ) | |
| 22 | en3lplem1VD | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ) → ( 𝑥 = 𝐶 → ∃ 𝑦 ( 𝑦 ∈ { 𝐶 , 𝐴 , 𝐵 } ∧ 𝑦 ∈ 𝑥 ) ) ) | |
| 23 | 20 21 22 | e13 | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) , 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } , 𝑥 = 𝐶 ▶ ∃ 𝑦 ( 𝑦 ∈ { 𝐶 , 𝐴 , 𝐵 } ∧ 𝑦 ∈ 𝑥 ) ) |
| 24 | tprot | ⊢ { 𝐶 , 𝐴 , 𝐵 } = { 𝐴 , 𝐵 , 𝐶 } | |
| 25 | 24 | eleq2i | ⊢ ( 𝑦 ∈ { 𝐶 , 𝐴 , 𝐵 } ↔ 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
| 26 | 25 | anbi1i | ⊢ ( ( 𝑦 ∈ { 𝐶 , 𝐴 , 𝐵 } ∧ 𝑦 ∈ 𝑥 ) ↔ ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝑦 ∈ 𝑥 ) ) |
| 27 | 26 | exbii | ⊢ ( ∃ 𝑦 ( 𝑦 ∈ { 𝐶 , 𝐴 , 𝐵 } ∧ 𝑦 ∈ 𝑥 ) ↔ ∃ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝑦 ∈ 𝑥 ) ) |
| 28 | 23 27 | e3bi | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) , 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } , 𝑥 = 𝐶 ▶ ∃ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝑦 ∈ 𝑥 ) ) |
| 29 | 28 | in3 | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) , 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } ▶ ( 𝑥 = 𝐶 → ∃ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝑦 ∈ 𝑥 ) ) ) |
| 30 | idn2 | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) , 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } ▶ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } ) | |
| 31 | dftp2 | ⊢ { 𝐴 , 𝐵 , 𝐶 } = { 𝑥 ∣ ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶 ) } | |
| 32 | 31 | eleq2i | ⊢ ( 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } ↔ 𝑥 ∈ { 𝑥 ∣ ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶 ) } ) |
| 33 | 30 32 | e2bi | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) , 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } ▶ 𝑥 ∈ { 𝑥 ∣ ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶 ) } ) |
| 34 | abid | ⊢ ( 𝑥 ∈ { 𝑥 ∣ ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶 ) } ↔ ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶 ) ) | |
| 35 | 33 34 | e2bi | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) , 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } ▶ ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶 ) ) |
| 36 | df-3or | ⊢ ( ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶 ) ↔ ( ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ∨ 𝑥 = 𝐶 ) ) | |
| 37 | 35 36 | e2bi | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) , 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } ▶ ( ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ∨ 𝑥 = 𝐶 ) ) |
| 38 | jao | ⊢ ( ( ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → ∃ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝑦 ∈ 𝑥 ) ) → ( ( 𝑥 = 𝐶 → ∃ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝑦 ∈ 𝑥 ) ) → ( ( ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ∨ 𝑥 = 𝐶 ) → ∃ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝑦 ∈ 𝑥 ) ) ) ) | |
| 39 | 18 29 37 38 | e222 | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) , 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } ▶ ∃ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝑦 ∈ 𝑥 ) ) |
| 40 | 39 | in2 | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) ▶ ( 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } → ∃ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝑦 ∈ 𝑥 ) ) ) |
| 41 | 40 | in1 | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) → ( 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } → ∃ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝑦 ∈ 𝑥 ) ) ) |