This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Right biconditional form of e1a . sylibr is e1bir without virtual deductions. (Contributed by Alan Sare, 24-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | e1bir.1 | ⊢ ( 𝜑 ▶ 𝜓 ) | |
| e1bir.2 | ⊢ ( 𝜒 ↔ 𝜓 ) | ||
| Assertion | e1bir | ⊢ ( 𝜑 ▶ 𝜒 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | e1bir.1 | ⊢ ( 𝜑 ▶ 𝜓 ) | |
| 2 | e1bir.2 | ⊢ ( 𝜒 ↔ 𝜓 ) | |
| 3 | 2 | biimpri | ⊢ ( 𝜓 → 𝜒 ) |
| 4 | 1 3 | e1a | ⊢ ( 𝜑 ▶ 𝜒 ) |