This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Virtual deduction proof of en3lplem1 . (Contributed by Alan Sare, 24-Oct-2011) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | en3lplem1VD | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) → ( 𝑥 = 𝐴 → ∃ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝑦 ∈ 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idn1 | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) ▶ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) ) | |
| 2 | simp3 | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) → 𝐶 ∈ 𝐴 ) | |
| 3 | 1 2 | e1a | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) ▶ 𝐶 ∈ 𝐴 ) |
| 4 | tpid3g | ⊢ ( 𝐶 ∈ 𝐴 → 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) | |
| 5 | 3 4 | e1a | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) ▶ 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
| 6 | idn2 | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) , 𝑥 = 𝐴 ▶ 𝑥 = 𝐴 ) | |
| 7 | eleq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝐶 ∈ 𝑥 ↔ 𝐶 ∈ 𝐴 ) ) | |
| 8 | 7 | biimprd | ⊢ ( 𝑥 = 𝐴 → ( 𝐶 ∈ 𝐴 → 𝐶 ∈ 𝑥 ) ) |
| 9 | 6 3 8 | e21 | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) , 𝑥 = 𝐴 ▶ 𝐶 ∈ 𝑥 ) |
| 10 | pm3.2 | ⊢ ( 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } → ( 𝐶 ∈ 𝑥 → ( 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐶 ∈ 𝑥 ) ) ) | |
| 11 | 5 9 10 | e12 | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) , 𝑥 = 𝐴 ▶ ( 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐶 ∈ 𝑥 ) ) |
| 12 | elex22 | ⊢ ( ( 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐶 ∈ 𝑥 ) → ∃ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝑦 ∈ 𝑥 ) ) | |
| 13 | 11 12 | e2 | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) , 𝑥 = 𝐴 ▶ ∃ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝑦 ∈ 𝑥 ) ) |
| 14 | 13 | in2 | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) ▶ ( 𝑥 = 𝐴 → ∃ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝑦 ∈ 𝑥 ) ) ) |
| 15 | 14 | in1 | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴 ) → ( 𝑥 = 𝐴 → ∃ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝑦 ∈ 𝑥 ) ) ) |