This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Building a set with two elements. (Contributed by FL, 11-Aug-2008) (Revised by Mario Carneiro, 10-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | en2eqpr | |- ( ( C ~~ 2o /\ A e. C /\ B e. C ) -> ( A =/= B -> C = { A , B } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2onn | |- 2o e. _om |
|
| 2 | nnfi | |- ( 2o e. _om -> 2o e. Fin ) |
|
| 3 | 1 2 | ax-mp | |- 2o e. Fin |
| 4 | simpl1 | |- ( ( ( C ~~ 2o /\ A e. C /\ B e. C ) /\ A =/= B ) -> C ~~ 2o ) |
|
| 5 | enfii | |- ( ( 2o e. Fin /\ C ~~ 2o ) -> C e. Fin ) |
|
| 6 | 3 4 5 | sylancr | |- ( ( ( C ~~ 2o /\ A e. C /\ B e. C ) /\ A =/= B ) -> C e. Fin ) |
| 7 | simpl2 | |- ( ( ( C ~~ 2o /\ A e. C /\ B e. C ) /\ A =/= B ) -> A e. C ) |
|
| 8 | simpl3 | |- ( ( ( C ~~ 2o /\ A e. C /\ B e. C ) /\ A =/= B ) -> B e. C ) |
|
| 9 | 7 8 | prssd | |- ( ( ( C ~~ 2o /\ A e. C /\ B e. C ) /\ A =/= B ) -> { A , B } C_ C ) |
| 10 | enpr2 | |- ( ( A e. C /\ B e. C /\ A =/= B ) -> { A , B } ~~ 2o ) |
|
| 11 | 10 | 3expa | |- ( ( ( A e. C /\ B e. C ) /\ A =/= B ) -> { A , B } ~~ 2o ) |
| 12 | 11 | 3adantl1 | |- ( ( ( C ~~ 2o /\ A e. C /\ B e. C ) /\ A =/= B ) -> { A , B } ~~ 2o ) |
| 13 | 4 | ensymd | |- ( ( ( C ~~ 2o /\ A e. C /\ B e. C ) /\ A =/= B ) -> 2o ~~ C ) |
| 14 | entr | |- ( ( { A , B } ~~ 2o /\ 2o ~~ C ) -> { A , B } ~~ C ) |
|
| 15 | 12 13 14 | syl2anc | |- ( ( ( C ~~ 2o /\ A e. C /\ B e. C ) /\ A =/= B ) -> { A , B } ~~ C ) |
| 16 | fisseneq | |- ( ( C e. Fin /\ { A , B } C_ C /\ { A , B } ~~ C ) -> { A , B } = C ) |
|
| 17 | 6 9 15 16 | syl3anc | |- ( ( ( C ~~ 2o /\ A e. C /\ B e. C ) /\ A =/= B ) -> { A , B } = C ) |
| 18 | 17 | eqcomd | |- ( ( ( C ~~ 2o /\ A e. C /\ B e. C ) /\ A =/= B ) -> C = { A , B } ) |
| 19 | 18 | ex | |- ( ( C ~~ 2o /\ A e. C /\ B e. C ) -> ( A =/= B -> C = { A , B } ) ) |