This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for embedsetcestrc . (Contributed by AV, 31-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcsetcestrc.s | ⊢ 𝑆 = ( SetCat ‘ 𝑈 ) | |
| funcsetcestrc.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | ||
| funcsetcestrc.f | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐶 ↦ { 〈 ( Base ‘ ndx ) , 𝑥 〉 } ) ) | ||
| funcsetcestrc.u | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | ||
| funcsetcestrc.o | ⊢ ( 𝜑 → ω ∈ 𝑈 ) | ||
| funcsetcestrclem3.e | ⊢ 𝐸 = ( ExtStrCat ‘ 𝑈 ) | ||
| funcsetcestrclem3.b | ⊢ 𝐵 = ( Base ‘ 𝐸 ) | ||
| Assertion | embedsetcestrclem | ⊢ ( 𝜑 → 𝐹 : 𝐶 –1-1→ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcsetcestrc.s | ⊢ 𝑆 = ( SetCat ‘ 𝑈 ) | |
| 2 | funcsetcestrc.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | |
| 3 | funcsetcestrc.f | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐶 ↦ { 〈 ( Base ‘ ndx ) , 𝑥 〉 } ) ) | |
| 4 | funcsetcestrc.u | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | |
| 5 | funcsetcestrc.o | ⊢ ( 𝜑 → ω ∈ 𝑈 ) | |
| 6 | funcsetcestrclem3.e | ⊢ 𝐸 = ( ExtStrCat ‘ 𝑈 ) | |
| 7 | funcsetcestrclem3.b | ⊢ 𝐵 = ( Base ‘ 𝐸 ) | |
| 8 | 1 2 3 4 5 6 7 | funcsetcestrclem3 | ⊢ ( 𝜑 → 𝐹 : 𝐶 ⟶ 𝐵 ) |
| 9 | 1 2 3 | funcsetcestrclem1 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑦 ) = { 〈 ( Base ‘ ndx ) , 𝑦 〉 } ) |
| 10 | 9 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) → ( 𝐹 ‘ 𝑦 ) = { 〈 ( Base ‘ ndx ) , 𝑦 〉 } ) |
| 11 | 1 2 3 | funcsetcestrclem1 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑧 ) = { 〈 ( Base ‘ ndx ) , 𝑧 〉 } ) |
| 12 | 11 | adantrl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) → ( 𝐹 ‘ 𝑧 ) = { 〈 ( Base ‘ ndx ) , 𝑧 〉 } ) |
| 13 | 10 12 | eqeq12d | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ↔ { 〈 ( Base ‘ ndx ) , 𝑦 〉 } = { 〈 ( Base ‘ ndx ) , 𝑧 〉 } ) ) |
| 14 | opex | ⊢ 〈 ( Base ‘ ndx ) , 𝑦 〉 ∈ V | |
| 15 | sneqbg | ⊢ ( 〈 ( Base ‘ ndx ) , 𝑦 〉 ∈ V → ( { 〈 ( Base ‘ ndx ) , 𝑦 〉 } = { 〈 ( Base ‘ ndx ) , 𝑧 〉 } ↔ 〈 ( Base ‘ ndx ) , 𝑦 〉 = 〈 ( Base ‘ ndx ) , 𝑧 〉 ) ) | |
| 16 | 14 15 | mp1i | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) → ( { 〈 ( Base ‘ ndx ) , 𝑦 〉 } = { 〈 ( Base ‘ ndx ) , 𝑧 〉 } ↔ 〈 ( Base ‘ ndx ) , 𝑦 〉 = 〈 ( Base ‘ ndx ) , 𝑧 〉 ) ) |
| 17 | fvexd | ⊢ ( 𝜑 → ( Base ‘ ndx ) ∈ V ) | |
| 18 | simpl | ⊢ ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) → 𝑦 ∈ 𝐶 ) | |
| 19 | opthg | ⊢ ( ( ( Base ‘ ndx ) ∈ V ∧ 𝑦 ∈ 𝐶 ) → ( 〈 ( Base ‘ ndx ) , 𝑦 〉 = 〈 ( Base ‘ ndx ) , 𝑧 〉 ↔ ( ( Base ‘ ndx ) = ( Base ‘ ndx ) ∧ 𝑦 = 𝑧 ) ) ) | |
| 20 | 17 18 19 | syl2an | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) → ( 〈 ( Base ‘ ndx ) , 𝑦 〉 = 〈 ( Base ‘ ndx ) , 𝑧 〉 ↔ ( ( Base ‘ ndx ) = ( Base ‘ ndx ) ∧ 𝑦 = 𝑧 ) ) ) |
| 21 | simpr | ⊢ ( ( ( Base ‘ ndx ) = ( Base ‘ ndx ) ∧ 𝑦 = 𝑧 ) → 𝑦 = 𝑧 ) | |
| 22 | 20 21 | biimtrdi | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) → ( 〈 ( Base ‘ ndx ) , 𝑦 〉 = 〈 ( Base ‘ ndx ) , 𝑧 〉 → 𝑦 = 𝑧 ) ) |
| 23 | 16 22 | sylbid | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) → ( { 〈 ( Base ‘ ndx ) , 𝑦 〉 } = { 〈 ( Base ‘ ndx ) , 𝑧 〉 } → 𝑦 = 𝑧 ) ) |
| 24 | 13 23 | sylbid | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ) → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) |
| 25 | 24 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐶 ∀ 𝑧 ∈ 𝐶 ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) |
| 26 | dff13 | ⊢ ( 𝐹 : 𝐶 –1-1→ 𝐵 ↔ ( 𝐹 : 𝐶 ⟶ 𝐵 ∧ ∀ 𝑦 ∈ 𝐶 ∀ 𝑧 ∈ 𝐶 ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) ) | |
| 27 | 8 25 26 | sylanbrc | ⊢ ( 𝜑 → 𝐹 : 𝐶 –1-1→ 𝐵 ) |