This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 4 for funcsetcestrc . (Contributed by AV, 27-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcsetcestrc.s | ⊢ 𝑆 = ( SetCat ‘ 𝑈 ) | |
| funcsetcestrc.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | ||
| funcsetcestrc.f | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐶 ↦ { 〈 ( Base ‘ ndx ) , 𝑥 〉 } ) ) | ||
| funcsetcestrc.u | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | ||
| funcsetcestrc.o | ⊢ ( 𝜑 → ω ∈ 𝑈 ) | ||
| funcsetcestrc.g | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐶 ↦ ( I ↾ ( 𝑦 ↑m 𝑥 ) ) ) ) | ||
| Assertion | funcsetcestrclem4 | ⊢ ( 𝜑 → 𝐺 Fn ( 𝐶 × 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcsetcestrc.s | ⊢ 𝑆 = ( SetCat ‘ 𝑈 ) | |
| 2 | funcsetcestrc.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | |
| 3 | funcsetcestrc.f | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐶 ↦ { 〈 ( Base ‘ ndx ) , 𝑥 〉 } ) ) | |
| 4 | funcsetcestrc.u | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | |
| 5 | funcsetcestrc.o | ⊢ ( 𝜑 → ω ∈ 𝑈 ) | |
| 6 | funcsetcestrc.g | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐶 ↦ ( I ↾ ( 𝑦 ↑m 𝑥 ) ) ) ) | |
| 7 | eqid | ⊢ ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐶 ↦ ( I ↾ ( 𝑦 ↑m 𝑥 ) ) ) = ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐶 ↦ ( I ↾ ( 𝑦 ↑m 𝑥 ) ) ) | |
| 8 | ovex | ⊢ ( 𝑦 ↑m 𝑥 ) ∈ V | |
| 9 | resiexg | ⊢ ( ( 𝑦 ↑m 𝑥 ) ∈ V → ( I ↾ ( 𝑦 ↑m 𝑥 ) ) ∈ V ) | |
| 10 | 8 9 | ax-mp | ⊢ ( I ↾ ( 𝑦 ↑m 𝑥 ) ) ∈ V |
| 11 | 7 10 | fnmpoi | ⊢ ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐶 ↦ ( I ↾ ( 𝑦 ↑m 𝑥 ) ) ) Fn ( 𝐶 × 𝐶 ) |
| 12 | 6 | fneq1d | ⊢ ( 𝜑 → ( 𝐺 Fn ( 𝐶 × 𝐶 ) ↔ ( 𝑥 ∈ 𝐶 , 𝑦 ∈ 𝐶 ↦ ( I ↾ ( 𝑦 ↑m 𝑥 ) ) ) Fn ( 𝐶 × 𝐶 ) ) ) |
| 13 | 11 12 | mpbiri | ⊢ ( 𝜑 → 𝐺 Fn ( 𝐶 × 𝐶 ) ) |