This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for embedsetcestrc . (Contributed by AV, 31-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcsetcestrc.s | |- S = ( SetCat ` U ) |
|
| funcsetcestrc.c | |- C = ( Base ` S ) |
||
| funcsetcestrc.f | |- ( ph -> F = ( x e. C |-> { <. ( Base ` ndx ) , x >. } ) ) |
||
| funcsetcestrc.u | |- ( ph -> U e. WUni ) |
||
| funcsetcestrc.o | |- ( ph -> _om e. U ) |
||
| funcsetcestrclem3.e | |- E = ( ExtStrCat ` U ) |
||
| funcsetcestrclem3.b | |- B = ( Base ` E ) |
||
| Assertion | embedsetcestrclem | |- ( ph -> F : C -1-1-> B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcsetcestrc.s | |- S = ( SetCat ` U ) |
|
| 2 | funcsetcestrc.c | |- C = ( Base ` S ) |
|
| 3 | funcsetcestrc.f | |- ( ph -> F = ( x e. C |-> { <. ( Base ` ndx ) , x >. } ) ) |
|
| 4 | funcsetcestrc.u | |- ( ph -> U e. WUni ) |
|
| 5 | funcsetcestrc.o | |- ( ph -> _om e. U ) |
|
| 6 | funcsetcestrclem3.e | |- E = ( ExtStrCat ` U ) |
|
| 7 | funcsetcestrclem3.b | |- B = ( Base ` E ) |
|
| 8 | 1 2 3 4 5 6 7 | funcsetcestrclem3 | |- ( ph -> F : C --> B ) |
| 9 | 1 2 3 | funcsetcestrclem1 | |- ( ( ph /\ y e. C ) -> ( F ` y ) = { <. ( Base ` ndx ) , y >. } ) |
| 10 | 9 | adantrr | |- ( ( ph /\ ( y e. C /\ z e. C ) ) -> ( F ` y ) = { <. ( Base ` ndx ) , y >. } ) |
| 11 | 1 2 3 | funcsetcestrclem1 | |- ( ( ph /\ z e. C ) -> ( F ` z ) = { <. ( Base ` ndx ) , z >. } ) |
| 12 | 11 | adantrl | |- ( ( ph /\ ( y e. C /\ z e. C ) ) -> ( F ` z ) = { <. ( Base ` ndx ) , z >. } ) |
| 13 | 10 12 | eqeq12d | |- ( ( ph /\ ( y e. C /\ z e. C ) ) -> ( ( F ` y ) = ( F ` z ) <-> { <. ( Base ` ndx ) , y >. } = { <. ( Base ` ndx ) , z >. } ) ) |
| 14 | opex | |- <. ( Base ` ndx ) , y >. e. _V |
|
| 15 | sneqbg | |- ( <. ( Base ` ndx ) , y >. e. _V -> ( { <. ( Base ` ndx ) , y >. } = { <. ( Base ` ndx ) , z >. } <-> <. ( Base ` ndx ) , y >. = <. ( Base ` ndx ) , z >. ) ) |
|
| 16 | 14 15 | mp1i | |- ( ( ph /\ ( y e. C /\ z e. C ) ) -> ( { <. ( Base ` ndx ) , y >. } = { <. ( Base ` ndx ) , z >. } <-> <. ( Base ` ndx ) , y >. = <. ( Base ` ndx ) , z >. ) ) |
| 17 | fvexd | |- ( ph -> ( Base ` ndx ) e. _V ) |
|
| 18 | simpl | |- ( ( y e. C /\ z e. C ) -> y e. C ) |
|
| 19 | opthg | |- ( ( ( Base ` ndx ) e. _V /\ y e. C ) -> ( <. ( Base ` ndx ) , y >. = <. ( Base ` ndx ) , z >. <-> ( ( Base ` ndx ) = ( Base ` ndx ) /\ y = z ) ) ) |
|
| 20 | 17 18 19 | syl2an | |- ( ( ph /\ ( y e. C /\ z e. C ) ) -> ( <. ( Base ` ndx ) , y >. = <. ( Base ` ndx ) , z >. <-> ( ( Base ` ndx ) = ( Base ` ndx ) /\ y = z ) ) ) |
| 21 | simpr | |- ( ( ( Base ` ndx ) = ( Base ` ndx ) /\ y = z ) -> y = z ) |
|
| 22 | 20 21 | biimtrdi | |- ( ( ph /\ ( y e. C /\ z e. C ) ) -> ( <. ( Base ` ndx ) , y >. = <. ( Base ` ndx ) , z >. -> y = z ) ) |
| 23 | 16 22 | sylbid | |- ( ( ph /\ ( y e. C /\ z e. C ) ) -> ( { <. ( Base ` ndx ) , y >. } = { <. ( Base ` ndx ) , z >. } -> y = z ) ) |
| 24 | 13 23 | sylbid | |- ( ( ph /\ ( y e. C /\ z e. C ) ) -> ( ( F ` y ) = ( F ` z ) -> y = z ) ) |
| 25 | 24 | ralrimivva | |- ( ph -> A. y e. C A. z e. C ( ( F ` y ) = ( F ` z ) -> y = z ) ) |
| 26 | dff13 | |- ( F : C -1-1-> B <-> ( F : C --> B /\ A. y e. C A. z e. C ( ( F ` y ) = ( F ` z ) -> y = z ) ) ) |
|
| 27 | 8 25 26 | sylanbrc | |- ( ph -> F : C -1-1-> B ) |