This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 3 for funcsetcestrc . (Contributed by AV, 27-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcsetcestrc.s | ⊢ 𝑆 = ( SetCat ‘ 𝑈 ) | |
| funcsetcestrc.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | ||
| funcsetcestrc.f | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐶 ↦ { 〈 ( Base ‘ ndx ) , 𝑥 〉 } ) ) | ||
| funcsetcestrc.u | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | ||
| funcsetcestrc.o | ⊢ ( 𝜑 → ω ∈ 𝑈 ) | ||
| funcsetcestrclem3.e | ⊢ 𝐸 = ( ExtStrCat ‘ 𝑈 ) | ||
| funcsetcestrclem3.b | ⊢ 𝐵 = ( Base ‘ 𝐸 ) | ||
| Assertion | funcsetcestrclem3 | ⊢ ( 𝜑 → 𝐹 : 𝐶 ⟶ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcsetcestrc.s | ⊢ 𝑆 = ( SetCat ‘ 𝑈 ) | |
| 2 | funcsetcestrc.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | |
| 3 | funcsetcestrc.f | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐶 ↦ { 〈 ( Base ‘ ndx ) , 𝑥 〉 } ) ) | |
| 4 | funcsetcestrc.u | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | |
| 5 | funcsetcestrc.o | ⊢ ( 𝜑 → ω ∈ 𝑈 ) | |
| 6 | funcsetcestrclem3.e | ⊢ 𝐸 = ( ExtStrCat ‘ 𝑈 ) | |
| 7 | funcsetcestrclem3.b | ⊢ 𝐵 = ( Base ‘ 𝐸 ) | |
| 8 | 1 2 4 5 | setc1strwun | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → { 〈 ( Base ‘ ndx ) , 𝑥 〉 } ∈ 𝑈 ) |
| 9 | 6 4 | estrcbas | ⊢ ( 𝜑 → 𝑈 = ( Base ‘ 𝐸 ) ) |
| 10 | 9 | eqcomd | ⊢ ( 𝜑 → ( Base ‘ 𝐸 ) = 𝑈 ) |
| 11 | 10 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( Base ‘ 𝐸 ) = 𝑈 ) |
| 12 | 8 11 | eleqtrrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → { 〈 ( Base ‘ ndx ) , 𝑥 〉 } ∈ ( Base ‘ 𝐸 ) ) |
| 13 | 12 7 | eleqtrrdi | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → { 〈 ( Base ‘ ndx ) , 𝑥 〉 } ∈ 𝐵 ) |
| 14 | 3 13 | fmpt3d | ⊢ ( 𝜑 → 𝐹 : 𝐶 ⟶ 𝐵 ) |