This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the set of unitary operators on Hilbert space. (Contributed by NM, 18-Jan-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-unop | ⊢ UniOp = { 𝑡 ∣ ( 𝑡 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑡 ‘ 𝑥 ) ·ih ( 𝑡 ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cuo | ⊢ UniOp | |
| 1 | vt | ⊢ 𝑡 | |
| 2 | 1 | cv | ⊢ 𝑡 |
| 3 | chba | ⊢ ℋ | |
| 4 | 3 3 2 | wfo | ⊢ 𝑡 : ℋ –onto→ ℋ |
| 5 | vx | ⊢ 𝑥 | |
| 6 | vy | ⊢ 𝑦 | |
| 7 | 5 | cv | ⊢ 𝑥 |
| 8 | 7 2 | cfv | ⊢ ( 𝑡 ‘ 𝑥 ) |
| 9 | csp | ⊢ ·ih | |
| 10 | 6 | cv | ⊢ 𝑦 |
| 11 | 10 2 | cfv | ⊢ ( 𝑡 ‘ 𝑦 ) |
| 12 | 8 11 9 | co | ⊢ ( ( 𝑡 ‘ 𝑥 ) ·ih ( 𝑡 ‘ 𝑦 ) ) |
| 13 | 7 10 9 | co | ⊢ ( 𝑥 ·ih 𝑦 ) |
| 14 | 12 13 | wceq | ⊢ ( ( 𝑡 ‘ 𝑥 ) ·ih ( 𝑡 ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) |
| 15 | 14 6 3 | wral | ⊢ ∀ 𝑦 ∈ ℋ ( ( 𝑡 ‘ 𝑥 ) ·ih ( 𝑡 ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) |
| 16 | 15 5 3 | wral | ⊢ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑡 ‘ 𝑥 ) ·ih ( 𝑡 ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) |
| 17 | 4 16 | wa | ⊢ ( 𝑡 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑡 ‘ 𝑥 ) ·ih ( 𝑡 ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ) |
| 18 | 17 1 | cab | ⊢ { 𝑡 ∣ ( 𝑡 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑡 ‘ 𝑥 ) ·ih ( 𝑡 ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ) } |
| 19 | 0 18 | wceq | ⊢ UniOp = { 𝑡 ∣ ( 𝑡 : ℋ –onto→ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑡 ‘ 𝑥 ) ·ih ( 𝑡 ‘ 𝑦 ) ) = ( 𝑥 ·ih 𝑦 ) ) } |