This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties of a Tarski class. (Contributed by FL, 30-Dec-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eltskg | |- ( T e. V -> ( T e. Tarski <-> ( A. z e. T ( ~P z C_ T /\ E. w e. T ~P z C_ w ) /\ A. z e. ~P T ( z ~~ T \/ z e. T ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq2 | |- ( y = T -> ( ~P z C_ y <-> ~P z C_ T ) ) |
|
| 2 | rexeq | |- ( y = T -> ( E. w e. y ~P z C_ w <-> E. w e. T ~P z C_ w ) ) |
|
| 3 | 1 2 | anbi12d | |- ( y = T -> ( ( ~P z C_ y /\ E. w e. y ~P z C_ w ) <-> ( ~P z C_ T /\ E. w e. T ~P z C_ w ) ) ) |
| 4 | 3 | raleqbi1dv | |- ( y = T -> ( A. z e. y ( ~P z C_ y /\ E. w e. y ~P z C_ w ) <-> A. z e. T ( ~P z C_ T /\ E. w e. T ~P z C_ w ) ) ) |
| 5 | pweq | |- ( y = T -> ~P y = ~P T ) |
|
| 6 | breq2 | |- ( y = T -> ( z ~~ y <-> z ~~ T ) ) |
|
| 7 | eleq2 | |- ( y = T -> ( z e. y <-> z e. T ) ) |
|
| 8 | 6 7 | orbi12d | |- ( y = T -> ( ( z ~~ y \/ z e. y ) <-> ( z ~~ T \/ z e. T ) ) ) |
| 9 | 5 8 | raleqbidv | |- ( y = T -> ( A. z e. ~P y ( z ~~ y \/ z e. y ) <-> A. z e. ~P T ( z ~~ T \/ z e. T ) ) ) |
| 10 | 4 9 | anbi12d | |- ( y = T -> ( ( A. z e. y ( ~P z C_ y /\ E. w e. y ~P z C_ w ) /\ A. z e. ~P y ( z ~~ y \/ z e. y ) ) <-> ( A. z e. T ( ~P z C_ T /\ E. w e. T ~P z C_ w ) /\ A. z e. ~P T ( z ~~ T \/ z e. T ) ) ) ) |
| 11 | df-tsk | |- Tarski = { y | ( A. z e. y ( ~P z C_ y /\ E. w e. y ~P z C_ w ) /\ A. z e. ~P y ( z ~~ y \/ z e. y ) ) } |
|
| 12 | 10 11 | elab2g | |- ( T e. V -> ( T e. Tarski <-> ( A. z e. T ( ~P z C_ T /\ E. w e. T ~P z C_ w ) /\ A. z e. ~P T ( z ~~ T \/ z e. T ) ) ) ) |