This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a topology generated by a basis. (Contributed by NM, 16-Jul-2006) (Revised by Mario Carneiro, 10-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eltg | |- ( B e. V -> ( A e. ( topGen ` B ) <-> A C_ U. ( B i^i ~P A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgval | |- ( B e. V -> ( topGen ` B ) = { x | x C_ U. ( B i^i ~P x ) } ) |
|
| 2 | 1 | eleq2d | |- ( B e. V -> ( A e. ( topGen ` B ) <-> A e. { x | x C_ U. ( B i^i ~P x ) } ) ) |
| 3 | elex | |- ( A e. { x | x C_ U. ( B i^i ~P x ) } -> A e. _V ) |
|
| 4 | 3 | adantl | |- ( ( B e. V /\ A e. { x | x C_ U. ( B i^i ~P x ) } ) -> A e. _V ) |
| 5 | inex1g | |- ( B e. V -> ( B i^i ~P A ) e. _V ) |
|
| 6 | 5 | uniexd | |- ( B e. V -> U. ( B i^i ~P A ) e. _V ) |
| 7 | ssexg | |- ( ( A C_ U. ( B i^i ~P A ) /\ U. ( B i^i ~P A ) e. _V ) -> A e. _V ) |
|
| 8 | 6 7 | sylan2 | |- ( ( A C_ U. ( B i^i ~P A ) /\ B e. V ) -> A e. _V ) |
| 9 | 8 | ancoms | |- ( ( B e. V /\ A C_ U. ( B i^i ~P A ) ) -> A e. _V ) |
| 10 | id | |- ( x = A -> x = A ) |
|
| 11 | pweq | |- ( x = A -> ~P x = ~P A ) |
|
| 12 | 11 | ineq2d | |- ( x = A -> ( B i^i ~P x ) = ( B i^i ~P A ) ) |
| 13 | 12 | unieqd | |- ( x = A -> U. ( B i^i ~P x ) = U. ( B i^i ~P A ) ) |
| 14 | 10 13 | sseq12d | |- ( x = A -> ( x C_ U. ( B i^i ~P x ) <-> A C_ U. ( B i^i ~P A ) ) ) |
| 15 | 14 | elabg | |- ( A e. _V -> ( A e. { x | x C_ U. ( B i^i ~P x ) } <-> A C_ U. ( B i^i ~P A ) ) ) |
| 16 | 4 9 15 | pm5.21nd | |- ( B e. V -> ( A e. { x | x C_ U. ( B i^i ~P x ) } <-> A C_ U. ( B i^i ~P A ) ) ) |
| 17 | 2 16 | bitrd | |- ( B e. V -> ( A e. ( topGen ` B ) <-> A C_ U. ( B i^i ~P A ) ) ) |