This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a symmetric difference. (Contributed by Scott Fenton, 31-Mar-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elsymdif | ⊢ ( 𝐴 ∈ ( 𝐵 △ 𝐶 ) ↔ ¬ ( 𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elun | ⊢ ( 𝐴 ∈ ( ( 𝐵 ∖ 𝐶 ) ∪ ( 𝐶 ∖ 𝐵 ) ) ↔ ( 𝐴 ∈ ( 𝐵 ∖ 𝐶 ) ∨ 𝐴 ∈ ( 𝐶 ∖ 𝐵 ) ) ) | |
| 2 | eldif | ⊢ ( 𝐴 ∈ ( 𝐵 ∖ 𝐶 ) ↔ ( 𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶 ) ) | |
| 3 | eldif | ⊢ ( 𝐴 ∈ ( 𝐶 ∖ 𝐵 ) ↔ ( 𝐴 ∈ 𝐶 ∧ ¬ 𝐴 ∈ 𝐵 ) ) | |
| 4 | 2 3 | orbi12i | ⊢ ( ( 𝐴 ∈ ( 𝐵 ∖ 𝐶 ) ∨ 𝐴 ∈ ( 𝐶 ∖ 𝐵 ) ) ↔ ( ( 𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶 ) ∨ ( 𝐴 ∈ 𝐶 ∧ ¬ 𝐴 ∈ 𝐵 ) ) ) |
| 5 | 1 4 | bitri | ⊢ ( 𝐴 ∈ ( ( 𝐵 ∖ 𝐶 ) ∪ ( 𝐶 ∖ 𝐵 ) ) ↔ ( ( 𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶 ) ∨ ( 𝐴 ∈ 𝐶 ∧ ¬ 𝐴 ∈ 𝐵 ) ) ) |
| 6 | df-symdif | ⊢ ( 𝐵 △ 𝐶 ) = ( ( 𝐵 ∖ 𝐶 ) ∪ ( 𝐶 ∖ 𝐵 ) ) | |
| 7 | 6 | eleq2i | ⊢ ( 𝐴 ∈ ( 𝐵 △ 𝐶 ) ↔ 𝐴 ∈ ( ( 𝐵 ∖ 𝐶 ) ∪ ( 𝐶 ∖ 𝐵 ) ) ) |
| 8 | xor | ⊢ ( ¬ ( 𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝐶 ) ↔ ( ( 𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶 ) ∨ ( 𝐴 ∈ 𝐶 ∧ ¬ 𝐴 ∈ 𝐵 ) ) ) | |
| 9 | 5 7 8 | 3bitr4i | ⊢ ( 𝐴 ∈ ( 𝐵 △ 𝐶 ) ↔ ¬ ( 𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝐶 ) ) |