This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the symmetric difference of two classes. Alternate definitions are dfsymdif2 , dfsymdif3 and dfsymdif4 . (Contributed by Scott Fenton, 31-Mar-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-symdif | ⊢ ( 𝐴 △ 𝐵 ) = ( ( 𝐴 ∖ 𝐵 ) ∪ ( 𝐵 ∖ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cA | ⊢ 𝐴 | |
| 1 | cB | ⊢ 𝐵 | |
| 2 | 0 1 | csymdif | ⊢ ( 𝐴 △ 𝐵 ) |
| 3 | 0 1 | cdif | ⊢ ( 𝐴 ∖ 𝐵 ) |
| 4 | 1 0 | cdif | ⊢ ( 𝐵 ∖ 𝐴 ) |
| 5 | 3 4 | cun | ⊢ ( ( 𝐴 ∖ 𝐵 ) ∪ ( 𝐵 ∖ 𝐴 ) ) |
| 6 | 2 5 | wceq | ⊢ ( 𝐴 △ 𝐵 ) = ( ( 𝐴 ∖ 𝐵 ) ∪ ( 𝐵 ∖ 𝐴 ) ) |