This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in the range of a function. (Contributed by NM, 27-Aug-2007) (Revised by Mario Carneiro, 31-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rnmpt.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
| Assertion | elrnmptg | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ( 𝐶 ∈ ran 𝐹 ↔ ∃ 𝑥 ∈ 𝐴 𝐶 = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnmpt.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
| 2 | 1 | rnmpt | ⊢ ran 𝐹 = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } |
| 3 | 2 | eleq2i | ⊢ ( 𝐶 ∈ ran 𝐹 ↔ 𝐶 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ) |
| 4 | r19.29 | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ∧ ∃ 𝑥 ∈ 𝐴 𝐶 = 𝐵 ) → ∃ 𝑥 ∈ 𝐴 ( 𝐵 ∈ 𝑉 ∧ 𝐶 = 𝐵 ) ) | |
| 5 | eleq1 | ⊢ ( 𝐶 = 𝐵 → ( 𝐶 ∈ 𝑉 ↔ 𝐵 ∈ 𝑉 ) ) | |
| 6 | 5 | biimparc | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 = 𝐵 ) → 𝐶 ∈ 𝑉 ) |
| 7 | 6 | elexd | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 = 𝐵 ) → 𝐶 ∈ V ) |
| 8 | 7 | rexlimivw | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝐵 ∈ 𝑉 ∧ 𝐶 = 𝐵 ) → 𝐶 ∈ V ) |
| 9 | 4 8 | syl | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 ∧ ∃ 𝑥 ∈ 𝐴 𝐶 = 𝐵 ) → 𝐶 ∈ V ) |
| 10 | 9 | ex | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ( ∃ 𝑥 ∈ 𝐴 𝐶 = 𝐵 → 𝐶 ∈ V ) ) |
| 11 | eqeq1 | ⊢ ( 𝑦 = 𝐶 → ( 𝑦 = 𝐵 ↔ 𝐶 = 𝐵 ) ) | |
| 12 | 11 | rexbidv | ⊢ ( 𝑦 = 𝐶 → ( ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 𝐶 = 𝐵 ) ) |
| 13 | 12 | elab3g | ⊢ ( ( ∃ 𝑥 ∈ 𝐴 𝐶 = 𝐵 → 𝐶 ∈ V ) → ( 𝐶 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ↔ ∃ 𝑥 ∈ 𝐴 𝐶 = 𝐵 ) ) |
| 14 | 10 13 | syl | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ( 𝐶 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } ↔ ∃ 𝑥 ∈ 𝐴 𝐶 = 𝐵 ) ) |
| 15 | 3 14 | bitrid | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ( 𝐶 ∈ ran 𝐹 ↔ ∃ 𝑥 ∈ 𝐴 𝐶 = 𝐵 ) ) |