This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in the image of an operation. (Contributed by SN, 27-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rngop.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) | |
| elimampo.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) | ||
| elimampo.x | ⊢ ( 𝜑 → 𝑋 ⊆ 𝐴 ) | ||
| elimampo.y | ⊢ ( 𝜑 → 𝑌 ⊆ 𝐵 ) | ||
| Assertion | elimampo | ⊢ ( 𝜑 → ( 𝐷 ∈ ( 𝐹 “ ( 𝑋 × 𝑌 ) ) ↔ ∃ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑌 𝐷 = 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngop.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) | |
| 2 | elimampo.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) | |
| 3 | elimampo.x | ⊢ ( 𝜑 → 𝑋 ⊆ 𝐴 ) | |
| 4 | elimampo.y | ⊢ ( 𝜑 → 𝑌 ⊆ 𝐵 ) | |
| 5 | df-ima | ⊢ ( 𝐹 “ ( 𝑋 × 𝑌 ) ) = ran ( 𝐹 ↾ ( 𝑋 × 𝑌 ) ) | |
| 6 | 5 | eleq2i | ⊢ ( 𝐷 ∈ ( 𝐹 “ ( 𝑋 × 𝑌 ) ) ↔ 𝐷 ∈ ran ( 𝐹 ↾ ( 𝑋 × 𝑌 ) ) ) |
| 7 | 1 | reseq1i | ⊢ ( 𝐹 ↾ ( 𝑋 × 𝑌 ) ) = ( ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) ↾ ( 𝑋 × 𝑌 ) ) |
| 8 | resmpo | ⊢ ( ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐵 ) → ( ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) ↾ ( 𝑋 × 𝑌 ) ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ) | |
| 9 | 3 4 8 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) ↾ ( 𝑋 × 𝑌 ) ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ) |
| 10 | 7 9 | eqtrid | ⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝑋 × 𝑌 ) ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ) |
| 11 | 10 | rneqd | ⊢ ( 𝜑 → ran ( 𝐹 ↾ ( 𝑋 × 𝑌 ) ) = ran ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ) |
| 12 | 11 | eleq2d | ⊢ ( 𝜑 → ( 𝐷 ∈ ran ( 𝐹 ↾ ( 𝑋 × 𝑌 ) ) ↔ 𝐷 ∈ ran ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ) ) |
| 13 | 6 12 | bitrid | ⊢ ( 𝜑 → ( 𝐷 ∈ ( 𝐹 “ ( 𝑋 × 𝑌 ) ) ↔ 𝐷 ∈ ran ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ) ) |
| 14 | eqid | ⊢ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) | |
| 15 | 14 | elrnmpog | ⊢ ( 𝐷 ∈ 𝑉 → ( 𝐷 ∈ ran ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ↔ ∃ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑌 𝐷 = 𝐶 ) ) |
| 16 | 2 15 | syl | ⊢ ( 𝜑 → ( 𝐷 ∈ ran ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐶 ) ↔ ∃ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑌 𝐷 = 𝐶 ) ) |
| 17 | 13 16 | bitrd | ⊢ ( 𝜑 → ( 𝐷 ∈ ( 𝐹 “ ( 𝑋 × 𝑌 ) ) ↔ ∃ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝑌 𝐷 = 𝐶 ) ) |