This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elements of the class of reflexive relations which are elements of the class of symmetric relations as well (like the elements of the class of equivalence relations dfeqvrels2 ) can use the restricted version for their reflexive part (see below), not just the (I i^i ( dom R X. ran R ) ) C R version of dfrefrels2 , cf. the comment of dfrefrels2 . (Contributed by Peter Mazsa, 22-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elrefsymrels2 | ⊢ ( 𝑅 ∈ ( RefRels ∩ SymRels ) ↔ ( ( ( I ↾ dom 𝑅 ) ⊆ 𝑅 ∧ ◡ 𝑅 ⊆ 𝑅 ) ∧ 𝑅 ∈ Rels ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | refsymrels2 | ⊢ ( RefRels ∩ SymRels ) = { 𝑟 ∈ Rels ∣ ( ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ ◡ 𝑟 ⊆ 𝑟 ) } | |
| 2 | dmeq | ⊢ ( 𝑟 = 𝑅 → dom 𝑟 = dom 𝑅 ) | |
| 3 | 2 | reseq2d | ⊢ ( 𝑟 = 𝑅 → ( I ↾ dom 𝑟 ) = ( I ↾ dom 𝑅 ) ) |
| 4 | id | ⊢ ( 𝑟 = 𝑅 → 𝑟 = 𝑅 ) | |
| 5 | 3 4 | sseq12d | ⊢ ( 𝑟 = 𝑅 → ( ( I ↾ dom 𝑟 ) ⊆ 𝑟 ↔ ( I ↾ dom 𝑅 ) ⊆ 𝑅 ) ) |
| 6 | cnveq | ⊢ ( 𝑟 = 𝑅 → ◡ 𝑟 = ◡ 𝑅 ) | |
| 7 | 6 4 | sseq12d | ⊢ ( 𝑟 = 𝑅 → ( ◡ 𝑟 ⊆ 𝑟 ↔ ◡ 𝑅 ⊆ 𝑅 ) ) |
| 8 | 5 7 | anbi12d | ⊢ ( 𝑟 = 𝑅 → ( ( ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ ◡ 𝑟 ⊆ 𝑟 ) ↔ ( ( I ↾ dom 𝑅 ) ⊆ 𝑅 ∧ ◡ 𝑅 ⊆ 𝑅 ) ) ) |
| 9 | 1 8 | rabeqel | ⊢ ( 𝑅 ∈ ( RefRels ∩ SymRels ) ↔ ( ( ( I ↾ dom 𝑅 ) ⊆ 𝑅 ∧ ◡ 𝑅 ⊆ 𝑅 ) ∧ 𝑅 ∈ Rels ) ) |