This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Class element of a restricted class abstraction. (Contributed by Peter Mazsa, 24-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rabeqel.1 | ⊢ 𝐵 = { 𝑥 ∈ 𝐴 ∣ 𝜑 } | |
| rabeqel.2 | ⊢ ( 𝑥 = 𝐶 → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | rabeqel | ⊢ ( 𝐶 ∈ 𝐵 ↔ ( 𝜓 ∧ 𝐶 ∈ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeqel.1 | ⊢ 𝐵 = { 𝑥 ∈ 𝐴 ∣ 𝜑 } | |
| 2 | rabeqel.2 | ⊢ ( 𝑥 = 𝐶 → ( 𝜑 ↔ 𝜓 ) ) | |
| 3 | 2 1 | elrab2 | ⊢ ( 𝐶 ∈ 𝐵 ↔ ( 𝐶 ∈ 𝐴 ∧ 𝜓 ) ) |
| 4 | 3 | biancomi | ⊢ ( 𝐶 ∈ 𝐵 ↔ ( 𝜓 ∧ 𝐶 ∈ 𝐴 ) ) |