This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elements of the class of reflexive relations which are elements of the class of symmetric relations as well (like the elements of the class of equivalence relations dfeqvrels2 ) can use the restricted version for their reflexive part (see below), not just the (I i^i ( dom R X. ran R ) ) C R version of dfrefrels2 , cf. the comment of dfrefrels2 . (Contributed by Peter Mazsa, 22-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elrefsymrels2 | |- ( R e. ( RefRels i^i SymRels ) <-> ( ( ( _I |` dom R ) C_ R /\ `' R C_ R ) /\ R e. Rels ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | refsymrels2 | |- ( RefRels i^i SymRels ) = { r e. Rels | ( ( _I |` dom r ) C_ r /\ `' r C_ r ) } |
|
| 2 | dmeq | |- ( r = R -> dom r = dom R ) |
|
| 3 | 2 | reseq2d | |- ( r = R -> ( _I |` dom r ) = ( _I |` dom R ) ) |
| 4 | id | |- ( r = R -> r = R ) |
|
| 5 | 3 4 | sseq12d | |- ( r = R -> ( ( _I |` dom r ) C_ r <-> ( _I |` dom R ) C_ R ) ) |
| 6 | cnveq | |- ( r = R -> `' r = `' R ) |
|
| 7 | 6 4 | sseq12d | |- ( r = R -> ( `' r C_ r <-> `' R C_ R ) ) |
| 8 | 5 7 | anbi12d | |- ( r = R -> ( ( ( _I |` dom r ) C_ r /\ `' r C_ r ) <-> ( ( _I |` dom R ) C_ R /\ `' R C_ R ) ) ) |
| 9 | 1 8 | rabeqel | |- ( R e. ( RefRels i^i SymRels ) <-> ( ( ( _I |` dom R ) C_ R /\ `' R C_ R ) /\ R e. Rels ) ) |