This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the subtrahend of a class difference exists, then the minuend exists iff the difference exists. (Contributed by NM, 12-Nov-2003) (Proof shortened by Andrew Salmon, 12-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | difex2 | ⊢ ( 𝐵 ∈ 𝐶 → ( 𝐴 ∈ V ↔ ( 𝐴 ∖ 𝐵 ) ∈ V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difexg | ⊢ ( 𝐴 ∈ V → ( 𝐴 ∖ 𝐵 ) ∈ V ) | |
| 2 | ssun2 | ⊢ 𝐴 ⊆ ( 𝐵 ∪ 𝐴 ) | |
| 3 | uncom | ⊢ ( ( 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) = ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) | |
| 4 | undif2 | ⊢ ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) = ( 𝐵 ∪ 𝐴 ) | |
| 5 | 3 4 | eqtr2i | ⊢ ( 𝐵 ∪ 𝐴 ) = ( ( 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) |
| 6 | 2 5 | sseqtri | ⊢ 𝐴 ⊆ ( ( 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) |
| 7 | unexg | ⊢ ( ( ( 𝐴 ∖ 𝐵 ) ∈ V ∧ 𝐵 ∈ 𝐶 ) → ( ( 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) ∈ V ) | |
| 8 | ssexg | ⊢ ( ( 𝐴 ⊆ ( ( 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) ∧ ( ( 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) ∈ V ) → 𝐴 ∈ V ) | |
| 9 | 6 7 8 | sylancr | ⊢ ( ( ( 𝐴 ∖ 𝐵 ) ∈ V ∧ 𝐵 ∈ 𝐶 ) → 𝐴 ∈ V ) |
| 10 | 9 | expcom | ⊢ ( 𝐵 ∈ 𝐶 → ( ( 𝐴 ∖ 𝐵 ) ∈ V → 𝐴 ∈ V ) ) |
| 11 | 1 10 | impbid2 | ⊢ ( 𝐵 ∈ 𝐶 → ( 𝐴 ∈ V ↔ ( 𝐴 ∖ 𝐵 ) ∈ V ) ) |