This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The size of an unordered pair is 2 if and only if its elements are different sets. (Contributed by Alexander van der Vekens, 17-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashprb | ⊢ ( ( 𝑀 ∈ V ∧ 𝑁 ∈ V ∧ 𝑀 ≠ 𝑁 ) ↔ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashprg | ⊢ ( ( 𝑀 ∈ V ∧ 𝑁 ∈ V ) → ( 𝑀 ≠ 𝑁 ↔ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) ) | |
| 2 | 1 | biimp3a | ⊢ ( ( 𝑀 ∈ V ∧ 𝑁 ∈ V ∧ 𝑀 ≠ 𝑁 ) → ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) |
| 3 | elprchashprn2 | ⊢ ( ¬ 𝑀 ∈ V → ¬ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) | |
| 4 | pm2.21 | ⊢ ( ¬ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 → ( ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 → ( 𝑀 ∈ V ∧ 𝑁 ∈ V ∧ 𝑀 ≠ 𝑁 ) ) ) | |
| 5 | 3 4 | syl | ⊢ ( ¬ 𝑀 ∈ V → ( ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 → ( 𝑀 ∈ V ∧ 𝑁 ∈ V ∧ 𝑀 ≠ 𝑁 ) ) ) |
| 6 | elprchashprn2 | ⊢ ( ¬ 𝑁 ∈ V → ¬ ( ♯ ‘ { 𝑁 , 𝑀 } ) = 2 ) | |
| 7 | prcom | ⊢ { 𝑁 , 𝑀 } = { 𝑀 , 𝑁 } | |
| 8 | 7 | fveq2i | ⊢ ( ♯ ‘ { 𝑁 , 𝑀 } ) = ( ♯ ‘ { 𝑀 , 𝑁 } ) |
| 9 | 8 | eqeq1i | ⊢ ( ( ♯ ‘ { 𝑁 , 𝑀 } ) = 2 ↔ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) |
| 10 | 9 4 | sylnbi | ⊢ ( ¬ ( ♯ ‘ { 𝑁 , 𝑀 } ) = 2 → ( ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 → ( 𝑀 ∈ V ∧ 𝑁 ∈ V ∧ 𝑀 ≠ 𝑁 ) ) ) |
| 11 | 6 10 | syl | ⊢ ( ¬ 𝑁 ∈ V → ( ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 → ( 𝑀 ∈ V ∧ 𝑁 ∈ V ∧ 𝑀 ≠ 𝑁 ) ) ) |
| 12 | simpll | ⊢ ( ( ( 𝑀 ∈ V ∧ 𝑁 ∈ V ) ∧ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) → 𝑀 ∈ V ) | |
| 13 | simplr | ⊢ ( ( ( 𝑀 ∈ V ∧ 𝑁 ∈ V ) ∧ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) → 𝑁 ∈ V ) | |
| 14 | 1 | biimpar | ⊢ ( ( ( 𝑀 ∈ V ∧ 𝑁 ∈ V ) ∧ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) → 𝑀 ≠ 𝑁 ) |
| 15 | 12 13 14 | 3jca | ⊢ ( ( ( 𝑀 ∈ V ∧ 𝑁 ∈ V ) ∧ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) → ( 𝑀 ∈ V ∧ 𝑁 ∈ V ∧ 𝑀 ≠ 𝑁 ) ) |
| 16 | 15 | ex | ⊢ ( ( 𝑀 ∈ V ∧ 𝑁 ∈ V ) → ( ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 → ( 𝑀 ∈ V ∧ 𝑁 ∈ V ∧ 𝑀 ≠ 𝑁 ) ) ) |
| 17 | 5 11 16 | ecase | ⊢ ( ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 → ( 𝑀 ∈ V ∧ 𝑁 ∈ V ∧ 𝑀 ≠ 𝑁 ) ) |
| 18 | 2 17 | impbii | ⊢ ( ( 𝑀 ∈ V ∧ 𝑁 ∈ V ∧ 𝑀 ≠ 𝑁 ) ↔ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) |